
www.it-ebooks.info

http://www.it-ebooks.info/

“Great book! Whittaker delivers ideas that are innovative, smart, and mem-
orable. He really knows how to inspire engineers to think differently about
testing.”

—Patrick Copeland, Director of Test Engineering, Google

“James has perfected a fantastic manual testing methodology. The touring
concept not only works, but it works so well that we’ve started sharing the
tour concepts in the internal testing courses taught to all of our testers. If
you want to bring your manual testing processes into the 21st century then
read this book.”

—Alan Page, Director, Test Excellence, Microsoft

“I began working with James at IBM in 1990. Even then, he was inspiring
testers and developers to think outside the box. With this book he’s taken
his passion for software quality to a whole new level. Read it and watch
yourself become a better tester. James is the real deal and this book should
be read by every tester and software developer on the planet who cares
about software quality or just wants to have more fun doing what they
do.”

—Kaushal K. Agrawal, Sr. Director of Engineering, Cisco Systems

“James Whitaker is a true visionary in the world of testing. uTest and our
global community of QA professionals regularly look to James for inspira-
tion, interpretation of trends, and overarching testing wisdom. Now he’s
finally written it down for everyone else and our industry will be smarter
because of it.”

—Doron Reuveni, CEO and Co-Founder, uTest

“Only someone like James Whittaker would think of combining the idea of
tourism with software testing in such a novel way—and only James could
pull it off. The tours approach provides a memorable and extremely effec-
tive mental model that combines right degree of structure and organization
with plenty of room for exploration and creativity. Bugs beware!”

—Alberto Savoia, Google

“James is one of the best speakers around on software testing and reading
his book is much like hearing him speak. If you want to increase your
knowledge of testing and make yourself a better tester, this is the book
for you.”

—Stewart Noakes, Chairman and Co-Founder, TCL Group Ltd.

www.it-ebooks.info

http://www.it-ebooks.info/

“I’ve been doing exploratory testing for some time now and James’ tours
have given what I do a name, a focus and more importantly some actual
guidance. This book is going to make the job of teaching and performing
exploratory testing a whole lot easier.”

—Rob Lambert, Senior Test Consultant, iMeta Technologies Ltd

“I’m pretty pumped up about this work—it’s sane, it’s new, and I, a normal
human, can understand and use it without first studying the combined
works of various pompous, dead philosophers. I didn’t have to resort to a
dictionary once in the chapters I read. I genuinely feel this work is at the
forefront of some long-awaited and sorely-needed evolution for our field.”

—Linda Wilkinson, QA Manager, NetJets, Inc.

www.it-ebooks.info

http://www.it-ebooks.info/

Exploratory
Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

James A. Whittaker

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Exploratory
Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

Many of the designations used by manufacturers and sellers to distin-
guish their products are claimed as trademarks. Where those designa-
tions appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or
in all capitals.

The author and publisher have taken care in the preparation of this
book, but make no expressed or implied warranty of any kind and
assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with
or arising out of the use of the information or programs contained
herein.

The publisher offers excellent discounts on this book when ordered in
quantity for bulk purchases or special sales, which may include elec-
tronic versions and/or custom covers and content particular to your
business, training goals, marketing focus, and branding interests. For
more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data:

Whittaker, James A., 1965-
Exploratory software testing : tips, tricks, tours, and techniques to

guide manual testers / James A. Whittaker. — 1st ed.
p. cm.

ISBN 978-0-321-63641-6 (pbk. : alk. paper) 1. Computer software—
Testing. I. Title.

QA76.76.T48W465 2009
005.1’4—dc22

2009023290

Copyright © 2010 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This pub-
lication is protected by copyright, and permission must be obtained
from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, elec-
tronic, mechanical, photocopying, recording, or likewise. For informa-
tion regarding permissions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671 3447

ISBN-13: 978-0-321-63641-6
ISBN-10: 0-321-63641-4

Text printed in the United States on recycled paper at Courier in
Stoughton, Massachusetts.

First printing August 2009

Editor-in-Chief
Karen Gettman

Acquisitions Editor
Chris Guzikowski

Development Editor
Mark Renfrow

Managing Editor
Kristy Hart

Senior Project Editor
Lori Lyons

Copy Editor
Keith Cline

Indexer
Tim Wright

Proofreader
Apostrophe Editing
Services

Publishing Coordinator
Raina Chrobak

Cover Designer
Alan Clements

Senior Compositor
Gloria Schurick

www.it-ebooks.info

http://www.it-ebooks.info/

This book was written in large part while I was an architect at Microsoft.
It is dedicated to all the talented testers who crossed my path while I was there.
Thanks, you changed the way I thought, worked, and envisioned the discipline of
software testing. Keep up the good work!

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

A Fault to Guide Software Testing

010010101011011000100100100101010110110001001001001010101

Table of Contents
Foreword by Alan Page xv

Preface xvii

Chapter 1 The Case for Software Quality 1

The Magic of Software 1
The Failure of Software 4
Conclusion 9
Exercises 9

Chapter 2 The Case for Manual Testing 11

The Origin of Software Bugs 11
Preventing and Detecting Bugs 12

Preventing Bugs 12
Detecting Bugs 13

Manual Testing 14
Scripted Manual Testing 15
Exploratory Testing 16

Conclusion 19
Exercises 20

Chapter 3 Exploratory Testing in the Small 21

So You Want to Test Software? 21
Testing Is About Varying Things 23
User Input 23

What You Need to Know About User Input 24
How to Test User Input 25

State 32
What You Need to Know About Software State 32
How to Test Software State 33

Code Paths 35
User Data 36
Environment 36
Conclusion 37
Exercises 38

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 Exploratory Testing in the Large 39

Exploring Software 39
The Tourist Metaphor 41
“Touring” Tests 43

Tours of the Business District 45
Tours Through the Historical District 51
Tours Through the Entertainment District 52
Tours Through the Tourist District 55
Tours Through the Hotel District 58
Tours Through the Seedy District 60

Putting the Tours to Use 62
Conclusion 63
Exercises 64

Chapter 5 Hybrid Exploratory Testing Techniques 65

Scenarios and Exploration 65
Applying Scenario-Based Exploratory Testing 67
Introducing Variation Through Scenario Operators 68

Inserting Steps 68
Removing Steps 69
Replacing Steps 70
Repeating Steps 70
Data Substitution 70
Environment Substitution 71

Introducing Variation Through Tours 72
The Money Tour 73
The Landmark Tour 73
The Intellectual Tour 73
The Back Alley Tour 73
The Obsessive-Compulsive Tour 73
The All-Nighter Tour 74
The Saboteur 74
The Collector’s Tour 74
The Supermodel Tour 74
The Supporting Actor Tour 74
The Rained-Out Tour 75
The Tour-Crasher Tour 75

Conclusion 75
Exercises 76

x Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 Exploratory Testing in Practice 77

The Touring Test 77
Touring the Dynamics AX Client 78

Useful Tours for Exploration 79
The Collector’s Tour and Bugs as Souvenirs 81
Tour Tips 84

Using Tours to Find Bugs 86
Testing a Test Case Management Solution 86
The Rained-Out Tour 87
The Saboteur 88
The FedEx Tour 89
The TOGOF Tour 90

The Practice of Tours in Windows Mobile Devices 90
My Approach/Philosophy to Testing 91
Interesting Bugs Found Using Tours 92
Example of the Saboteur 94
Example of the Supermodel Tour 94

The Practice of Tours in Windows Media Player 97
Windows Media Player 97
The Garbage Collector’s Tour 97
The Supermodel Tour 100
The Intellectual Tour 100
The Intellectual Tour: Boundary Subtour 102

The Parking Lot Tour and the Practice of Tours in
Visual Studio Team System Test Edition 103

Tours in Sprints 103
Parking Lot Tour 105
Test Planning and Managing with Tours 106

Defining the Landscape 106
Planning with Tours 107
Letting the Tours Run 109
Analysis of Tour Results 109
Making the Call: Milestone/Release 110

In Practice 110
Conclusion 111
Exercises 111

Chapter 7 Touring and Testing’s Primary Pain Points 113

The Five Pain Points of Software Testing 113
Aimlessness 114

Define What Needs to Be Tested 115
Determine When to Test 115
Determine How to Test 116

Contents xi

www.it-ebooks.info

http://www.it-ebooks.info/

Repetitiveness 116
Know What Testing Has Already Occurred 117
Understand When to Inject Variation 117

Transiency 118
Monotony 119
Memorylessness 120
Conclusion 121
Exercises 122

Chapter 8 The Future of Software Testing 123

Welcome to the Future 123
The Heads-Up Display for Testers 124
“Testipedia” 126

Test Case Reuse 127
Test Atoms and Test Molecules 128

Virtualization of Test Assets 129
Visualization 129
Testing in the Future 132
Post-Release Testing 134
Conclusion 134
Exercises 135

Appendix A Building a Successful Career in Testing 137

How Did You Get into Testing? 137
Back to the Future 138

The Ascent 139
The Summit 140
The Descent 142

Appendix B A Selection of JW’s Professorial “Blog” 143

Teach Me Something 143
Software’s Ten Commandments 143

1. Thou Shalt Pummel Thine App with
Multitudes of Input 145

2. Thou Shalt Covet Thy Neighbor’s Apps 145
3. Thou Shalt Seek Thee Out the Wise Oracle 146
4. Thou Shalt Not Worship Irreproducible Failures 146
5. Thou Shalt Honor Thy Model and Automation 146
6. Thou Shalt Hold Thy Developers Sins

Against Them 147
7. Thou Shalt Revel in App Murder

(Celebrate the BSOD) 147

xii Contents

www.it-ebooks.info

http://www.it-ebooks.info/

8. Thou Shalt Keep Holy the Sabbath (Release) 148
9. Thou Shalt Covet Thy Developer’s Source Code 148

Testing Error Code 149
Will the Real Professional Testers Please Step Forward 151

The Common Denominators I Found Are
(In No Particular Order) 152

My Advice Can Be Summarized as Follows 153
Strike Three, Time for a New Batter 154

Formal Methods 154
Tools 155
Process Improvement 156
The Fourth Proposal 156

Software Testing as an Art, a Craft and a Discipline 157
Restoring Respect to the Software Industry 160

The Well-Intentioned but Off-Target Past 160
Moving On to Better Ideas 161
A Process for Analyzing Security Holes and

Quality Problems 161

Appendix C An Annotated Transcript of JW’s Microsoft Blog 165

Into the Blogoshere 165
July 2008 166

Before We Begin 166
PEST (Pub Exploration and Software Testing) 167
Measuring Testers 168
Prevention Versus Cure (Part 1) 169
Users and Johns 170
Ode to the Manual Tester 171
Prevention Versus Cure (Part 2) 173
Hail Europe! 174
The Poetry of Testing 175
Prevention Versus Cure (Part 3) 176
Back to Testing 177

August 2008 178
Prevention Versus Cure (Part 4) 179
If Microsoft Is So Good at Testing, Why Does

Your Software Still Suck? 180
Prevention Versus Cure (Part 5) 183
Freestyle Exploratory Testing 183
Scenario-Based Exploratory Testing 183
Strategy-Based Exploratory Testing 184
Feedback-Based Exploratory Testing 184

Contents xiii

www.it-ebooks.info

http://www.it-ebooks.info/

The Future of Testing (Part 1) 184
The Future of Testing (Part 2) 186

September 2008 188
On Certification 188
The Future of Testing (Part 3) 189
The Future of Testing (Part 4) 191
The Future of Testing (Part 5) 192

October 2008 193
The Future of Testing (Part 6) 194
The Future of Testing (Part 7) 195
The Future of Testing (Part 8) 196
Speaking of Google 198
Manual Versus Automated Testing Again 198

November 2008 199
Software Tester Wanted 200
Keeping Testers in Test 200

December 2008 201
Google Versus Microsoft and the

Dev:Test Ratio Debate 201
January 2009 202

The Zune Issue 203
Exploratory Testing Explained 204
Test Case Reuse 205
More About Test Case Reuse 206
I’m Back 207
Of Moles and Tainted Peanuts 208

Index 211

xiv Contents

www.it-ebooks.info

http://www.it-ebooks.info/

A Fault to Guide Software Testing

010010101011011000100100100101010110110001001001001010101

Foreword
I first met James Whittaker several years ago while he was a professor at
Florida Institute of Technology. He was visiting the Microsoft campus in
Redmond and spoke to a small group of testers about—what else—testing.
It was clear from that first meeting that James has a good sense of humor
and a deep knowledge of testing. Years in front of the classroom had obvi-
ously given him a chance to develop an ability to connect with those will-
ing and eager to learn.

James joined Microsoft in 2006, and over the past three years, I’ve had
the opportunity to spend plenty of time with James and get to know him
better. I’m happy to report that both the humor and the ability to connect
with testers are still key parts of his approach to teaching and communica-
tion. It seems like every time I talked to him there was another tester or test
team that he had connected with and inspired. Although we never worked
on the same team at Microsoft, we have had more than a few opportunities
to work together on cross-company initiatives as well as share ownership
of a lecture session for new Microsoft employees. (Of course, by “share,” I
mean that James created the presentation and I stole his jokes.) Where we
really had a chance to connect over numerous hours during the course of
his tenure at Microsoft was Microsoft’s soccer pitch. We probably spent a
hundred hours over the past three years kicking a ball back and forth while
discussing our ideas about improving software testing and development.

One important thing to know about James is that when he has an idea,
he wants to test it and prove it. (Would you expect any less in a great
tester?) What makes this attribute work so well for him is that he isn’t
afraid to fail and admit an idea won’t work. Perhaps my testing nature
makes me more cynical than average, but I’m somewhat happy to say that
I’ve shot down more than a few of James’ “great ideas” over the past few
years. It lends some truth to something James tells his mentees: “Behind
most good ideas is a graveyard of those that weren’t good enough.” A suc-
cessful innovator has to be able to shed his ego.

In my role at Microsoft, I have the opportunity to observe and be a part
of countless new and creative ideas—but I see many potentially fantastic
inventions fail because the inventor doesn’t take the creative idea and
develop it until it’s practical. As James and I continued to meet and discuss
testing ideas, I was able to watch him take several of his ideas and method-
ically develop them into practical, usable creations that spread around
Microsoft into the hands of real testers. His idea for a Tester’s Heads Up
Display was one of these ideas that was vetted on our soccer pitch, refined
in practice, and resulted in a practical way for testers to consume and use

www.it-ebooks.info

http://www.it-ebooks.info/

real-time test data while they worked. Microsoft gave James an award for
that one, and Visual Studio is keen to ship the concept in a future version
of their testing product.

I was also there when James latched on the touring metaphor to guide
software testing. He might not have been the first person to talk about
tours, but he was the first person I know of to fully work out the metaphor
and then coach a few dozen test teams in using it successfully on real (and
very complicated) software. He grew his collection from a few tours to
dozens—constantly developing and redefining the concepts until they
were just right. Some of the tours James came up with didn’t work. Lucky
for you, James wasn’t afraid to throw those out, so you don’t have to read
about them here. What ended up in this book is a collection of software
testing tours that flat out just work. They’ve been tested, then refined, and
then tested again. James’ ability to use storytelling to describe a concept
shines in these explanations. For such a great testing book, I found that
sometimes I forgot this was a testing book. I don’t know exactly what it is
about the metaphor and the act of testing that make tours work so well,
but I can’t say enough about how well the tours work in real-world prac-
tice. The concept is essential enough that Microsoft is adding training on
“testing tours” to the technical training course offered to all new testers
who join Microsoft.

If you’re even a little bit interested in improving your skills or those of
your team, this book will have something for you. It’s a great read and
something you will find yourself referring to repeatedly for years to come.

Alan Page
Director of Test Excellence, Microsoft

xvi Foreword

www.it-ebooks.info

http://www.it-ebooks.info/

A Fault to Guide Software Testing

010010101011011000100100100101010110110001001001001010101

Preface
“Customers buy features and tolerate bugs.”
—Scott Wadsworth

Anyone who has ever used a computer understands that software fails.
From the very first program to the most recent modern application, soft-
ware has never been perfect.

Nor is it ever likely to be. Not only is software development insanely
complex and the humans who perform it characteristically error prone, the
constant flux in hardware, operating systems, runtime environments, driv-
ers, platforms, databases, and so forth converges to make the task of soft-
ware development one of humankind’s most amazing accomplishments.

But amazing isn’t enough, as Chapter 1, “The Case for Software
Quality,” points out, the world needs it to be high quality, too.

Clearly, quality is not an exclusive concern of software testers. Software
needs to be built the right way, with reliability, security, performance, and
so forth part of the design of the system rather than a late-cycle after-
thought. However, testers are on the front lines when it comes to under-
standing the nature of software bugs. There is little hope of a broad-based
solution to software quality without testers being at the forefront of the
insights, techniques, and mitigations that will make such a possibility into
a reality.

There are many ways to talk about software quality and many interest-
ed audiences. This book is written for software testers and is about a spe-
cific class of bugs that I believe are more important than any other: bugs
that evade all means of detection and end up in a released product.

Any company that produces software ships bugs. Why did those bugs
get written? Why weren’t they found in code reviews, unit testing, static
analysis, or other developer-oriented activity? Why didn’t the test automa-
tion find them? What was it about those bugs that allowed them to avoid
manual testing?

What is the best way to find bugs that ship?
It is this last question that this book addresses. In Chapter 2, “The Case

for Manual Testing,” I make the point that because users find these bugs
while using the software, testing must also use the software to find them.
For automation, unit testing, and so forth, these bugs are simply inaccessi-
ble. Automate all you want, these bugs will defy you and resurface to
plague your users.

The problem is that much of the modern practice of manual testing is
aimless, ad hoc, and repetitive. Downright boring, some might add. This
book seeks to add guidance, technique, and organization to the process of
manual testing.

www.it-ebooks.info

http://www.it-ebooks.info/

In Chapter 3, “Exploratory Testing in the Small,” guidance is given to
testers for the small, tactical decisions they must make with nearly every
test case. They must decide which input values to apply to a specific input
field or which data to provide in a file that an application consumes. Many
such small decisions must be made while testing, and without guidance
such decisions often go unanalyzed and are suboptimal. Is the integer 4
better than the integer 400 when you have to enter a number into a text
box? Do I apply a string of length 32 or 256? There are indeed reasons to
select one over the other, depending on the context of the software that will
process that input. Given that testers make hundreds of such small deci-
sions every day, good guidance is crucial.

In Chapter 4, “Exploratory Testing in the Large,” guidance is given for
broader, strategic concerns of test plan development and test design. These
techniques are based on a concept of tours, generalized testing advice that
guides testers through the paths of an application like a tour guide leads a
tourist through the landmarks of a big city. Exploration does not have to be
random or ad hoc, and this book documents what many Microsoft and
Google testers now use on a daily basis. Tours such as the landmark tour
and the intellectual’s tour are part of the standard vocabulary of our manual
testers. Certainly, test techniques have been called “tours” before, but the
treatment of the entire tourist metaphor for software testing and the large-
scale application of the metaphor to test real shipping applications makes
its first appearance in this book.

Testing in the large also means guidance to create entire test strategies.
For example, how do we create a set of test cases that give good feature
coverage? How do we decide whether to include multiple feature usage in
a single test case? How do we create an entire suite of test cases that makes
the software work as hard as possible and thus find as many important
bugs as possible? These are overarching issues of test case design and test
suite quality that have to be addressed.

In Chapter 5, “Hybrid Exploratory Testing Techniques,” the concept of
tours is taken a step further by combining exploratory testing with tradi-
tional script or scenario-based testing. We discuss ways to modified end-to-
end scenarios, test scripts, or user stories to inject variation and increase
the bug-finding potential of traditionally static testing techniques.

In Chapter 6, “Exploratory Testing in Practice,” five guest writers from
various product groups at Microsoft provide their experience reports from
the touring techniques. These authors and their teams applied the tours to
real software in real shipping situations and document how they used the
tours, modified the tours, and even created their own. This is the first-hand
account of real testers who ship important, mission-critical software.

Finally, I end the book with two chapters aimed at wrapping up the
information from earlier chapters. In Chapter 7, “Touring and Testing’s
Primary Pain Points,” I describe what I see as the hardest problems in test-
ing and how purposeful exploratory testing fits into the broader solutions.

xviii Preface

www.it-ebooks.info

http://www.it-ebooks.info/

In Chapter 8, “The Future of Software Testing,” I look further ahead and
talk about how technologies such as virtualization, visualization, and even
video games will change the face of testing over the next few years. The
appendixes include my take on having a successful testing career and
assemble some of my more popular past writings (with new annotations
added), some of which are no longer available in any other form.

I hope you enjoy reading this book as much as I enjoyed writing it.

Preface xix

www.it-ebooks.info

http://www.it-ebooks.info/

Acknowledgments
I want to thank all Microsoft testers for their never-ceasing effort to
improve the quality of Microsoft software. I also want to acknowledge
Microsoft managers for allowing the many collaborators on this material to
try something new. The fact that it worked clearly illustrates the wisdom of
test managers at the company!

I also want to thank the following Microsofties who read, critiqued,
reviewed, contributed to, or otherwise helped me think through the tour-
ing tests:

David Gorena Elizondo, Mark Mydland, Ahmed Stewart, Geoff
Staneff, Joe Alan Muharsky, Naysawn Naderi, Anutthara Bharadwaj, Ryan
Vogrinec, Hiromi Nakura, Nicole Haugen, Alan Page, Vessie Djambazova,
Shawn Brown, Kyle Larson, Habib Heydarian, Bola Agbonile, Michael
Fortin, Ratnaditya Jonnalagadda, Dan Massey, Koby Leung, Jeremy Croy,
Scott Wadsworth, Craig Burley, Michael Bilodeau, Brent Jensen, Jim Shobe,
Vince Orgovan, Tracy Monteith, Amit Chatterjee, Tim Lamey, Jimbo
Pfeiffer, Brendan Murphy, Scott Stearns, Jeff MacDermot, Chris Shaffer,
Greg B. Jones, Sam Guckenheimer, and Yves Neyrand. Other non-
Microsofties were helpful as well, and thanks go to Gitte Ottosen, Rob
Lambert, Beth Galt, Janet Gregory, Michael Kelly, Charles Knutson, and
Brian Korver. Finally, my new Google colleagues Alberto Savoia and
Patrick Copeland deserve thanks not only for their encouragement, but
also for their future contributions to exploratory testing at Google.

xx Acknowledgments

www.it-ebooks.info

http://www.it-ebooks.info/

A Fault to Guide Software Testing

010010101011011000100100100101010110110001001001001010101

About the Author
James Whittaker has spent his career in software testing and has left his
mark on many aspects of the discipline. He was a pioneer in the field of
model-based testing, where his Ph.D. dissertation from the University of
Tennessee stands as a standard reference on the subject. His work in fault
injection produced the highly acclaimed runtime fault injection tool
Holodeck, and he was an early thought leader in security and penetration
testing. He is also well regarded as a teacher and presenter, and has won
numerous best paper and best presentation awards at international confer-
ences. While a professor at Florida Tech, his teaching of software testing
attracted dozens of sponsors from both industry and world governments,
and his students were highly sought after for their depth of technical
knowledge in testing.

Dr. Whittaker is the author of How to Break Software and its series fol-
low-ups How to Break Software Security (with Hugh Thompson) and How to
Break Web Software (with Mike Andrews). After ten years as a professor, he
joined Microsoft in 2006 and left in 2009 to join Google as the Director of
Test Engineering for the Kirkland and Seattle offices. He lives in
Woodinville, Washington, and is working toward a day when software just
works.

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1
The Case for Software Quality

“Any sufficiently advanced technology is indistinguishable from magic.”
—Arthur C. Clarke

The Magic of Software
The above quote from the famous British futurist and author of the 1968
classic 2001: A Space Odyssey is cited in many fields but is probably more
relevant to the magic of software than any other single invention. Consider

• That in 1953, Francis Crick and James Watson described the structure of
deoxyribonucleic acid (DNA) as a double-helix structure and thus
began a scientific pursuit of the Promethean power of genetics. But
unraveling the sheer volume and complexity of the genetic information
contained in DNA was a computational problem far ahead of its time. It
was the magic of software decades later that was the deciding factor in
unlocking the genetic code and the full promise of DNA research.
During the years 1990 to 2003, scientists working on the Human
Genome Project1 mapped the entire genetic blueprint of a human being. It
is hard to imagine, impossible in my mind, that such an effort could
have succeeded without the computing power and tireless effort of
sophisticated software code. Science invented software, but now it is
software that is helping to unlock the promise of science.
The result of this marriage between science and software will ulti-
mately extend human lifespan, cure diseases currently out of science’s
reach, and create new medical applications that will easily pass Clarke’s
test for magic in this humble technological era. The coming advances of
medical science will owe their existence to the magic of software.

1 See www.ornl.gov/sci/techresources/Human_Genome/home.shtml.

www.it-ebooks.info

www.ornl.gov/sci/techresources/Human_Genome/home.shtml
http://www.it-ebooks.info/

• That the existence of planets orbiting distant stars (so called extrasolar
planets or exoplanets) has been theorized at least since Isaac Newton
hypothesized the possibility in 1713.2 Various astronomers have used
exoplanets to explain rotational anomalies in various stars, including
Peter van de Kamp in 1969, who explained wobbles in the motion of
Barnard’s star by the presence of a planet 1.6 times the mass of Jupiter.
However, all of this was speculation until 2003, when the first actual
exoplanet was confirmed. The difference wasn’t new science but the
use of software to advance and aid existing science. It was only after the
software-assisted invention of ultrasensitive instruments and the use of
software to analyze the data they return that such accuracy became pos-
sible. By 2006, only 3 years later, more than 200 exoplanets had been
discovered, and more than 300 exoplanets have been confirmed as of
this writing.3

It’s hard to imagine that the instruments necessary to perform such a
search would be possible without software, which played a role not
only in the design and use of the instruments themselves but also in the
analysis of the data they produce. And now, thanks again to software,
the universe is as close as your home computer, vastly increasing the
number of eyes looking for exoplanets. If an earthlike exoplanet is ever
found, you may rest assured that the magic of software will be central
to its discovery and confirmation.

• That the ability for the autistic to communicate has long been a subject
of argument, with many experts arguing against parents and caregivers
who claim to understand their charges. Is the meaning of what seem to
be random and uncontrollable body movements simply in a language
that the nonautistic cannot translate? Could the power of software
bridge this gap?

For example, a YouTube video4 was produced by a “severely” autistic
girl using specialized software and input/output devices that allowed
her to translate her body language into English. I think Arthur C.
Clarke himself would have been pleased at this most astounding and
humanizing bit of technological magic.

I could cite many more such cases, and even a cursory look at the world
around us would bear witness to many more. The rapid societal, technolog-
ical, and cultural changes of the past 50 years dwarf any such change in any
other period of human existence. Certainly war, radio, television, and the
automobile have had their effect on our society, but now all those also fall
under the domain of software, for war is waged with software-driven tech-
nology, and all of our most sophisticated inventions have been made more
so by software. The more software a device contains, the more it is indistin-
guishable from magic.

2 Exploratory Software Testing

2 In Philosophiae Naturalis Principia Mathematica.
3 A good history appears at http://en.wikipedia.org/wiki/Extrasolar_planet#cite_note-13.
4 www.youtube.com/watch?v=JnylM1hI2jc or search for “the language of autism.”

www.it-ebooks.info

http://en.wikipedia.org/wiki/Extrasolar_planet#cite_note-13
www.youtube.com/watch?v=JnylM1hI2jc
http://www.it-ebooks.info/

The Case for Software Quality 3

And it will be software that drives even more such innovation over the
next 50 years. The wonders we and our children will see will seem magical
even by today’s sophisticated standards.

Software has the power to connect, simplify, heal, and entertain; and
humankind is in great need of this power. We face global problems whose
nonsolution could result in near extinction of our species. Climate change,
overpopulation, killer diseases, worldwide financial meltdowns, alternative
energy, near-Earth asteroids…there are many problems that simply require
software as part or all of their solution. The scientific theories to address
these problems will be modeled, and their solutions proven with software.
What-if scenarios will be studied, tweaked, and perfected with software.
Devices that are part of the solution will contain massive numbers of lines
of code. It is through software that the only worthwhile future for this
planet lies.

And yet we must ask this question: Do we trust software to perform these
globally important tasks? Software bugs have been responsible for many dis-
asters, from stranded ships5 to exploding rockets6 to the loss of life7 and for-
tune.8 Software is designed by imperfect humans, and our creations and
inventions echo this unnerving tendency to fail. Bridges collapse, airplanes
crash, cars break down, and nothing we build manages to successfully navi-
gate around human error.

But if there were an Olympic event for failure, a World Cup for prod-
ucts that cause angst and grief, software would surely rout the competition.
Among all the products ever made, software is peerless in its ability to fail.
Ask yourself right now how often you’ve been inconvenienced by software
failure. Has someone else gone out of his or her way to relate a miserable
software-related experience? Do you know anyone who has used comput-
ers who doesn’t have a horror story related to software? As a member of
the IT industry, how often do your non-IT friends ask you to fix their
computer?

It is the paradox of our lifetime that the one thing humankind is relying
on to make its future is the very thing we’d least like to place a bet on for
being there when we need it! Software is essential to our future, and yet
software fails at an alarming rate in the present.

5 “Software leaves navy smart ship dead in the water,” Government Computing News, available
at www.gcn.com/print/17_17/33727-1.html?topic=news#.

6 “Ariane 5 flight 501 failure, report by the inquiry board,” available at
http://sunnyday.mit.edu/accidents/Ariane5accidentreport.html.

7 “Patriot Missile’s Tragic Failure Might Have Been Averted — Computer Glitch Probably
Allowed Scud To Avoid Intercept, Army Says,” available at
http://community.seattletimes.nwsource.com/archive/?date=19910815&slug=1300071.

8 “Software costs 59.5 billion a year, study says,” available at www.infoworld.com/articles/
hn/xml/02/06/28/020628hnnistbugs.html?s=rss&t=news&slot=2.

www.it-ebooks.info

www.gcn.com/print/17_17/33727-1.html?topic=news#
http://sunnyday.mit.edu/accidents/Ariane5accidentreport.html
www.infoworld.com/articles/hn/xml/02/06/28/020628hnnistbugs.html?s=rss&t=news&slot=2
www.infoworld.com/articles/hn/xml/02/06/28/020628hnnistbugs.html?s=rss&t=news&slot=2
http://community.seattletimes.nwsource.com/archive/?date=19910815&slug=1300071
http://www.it-ebooks.info/

Here are a few examples of failure that you may recognize. If you’ve
managed to avoid them all, congratulations, but I expect that any reader of
this book could build a similar bug parade.9

The Failure of Software
One sure fire way to light the fire under software testers in a presentation is
to demo bugs. Books aren’t the best medium for such demos, but I suspect
those reading this book will be able to imagine the bug reports they would
write if the following failures appeared on their screen.

Figure 1.1 is one I call “Daddy, are we there yet?” This bug was absurd
enough that it’s doubtful it caused anyone to actually take this route. A
more likely outcome is that the user took driving direction from another
mapping tool. Loss of customers is a major side effect of buggy software,
particularly in the cloud where so many alternatives exist. Credit to
thedailywtf.com, who first published it.

4 Exploratory Software Testing

9 A reviewer questioned my choice of failures, citing examples of lost billions, stranded ships,
and medical disasters as more motivational. I’ve chosen the less-alarmist approach and
decided to favor bugs that most testers would be most likely to come up against in their
day-to-day testing job. Besides, I think these are really funny, and I find laughter highly
motivational.

FIGURE 1.1 Daddy, are we there yet? This bug has been fixed.

www.it-ebooks.info

http://www.it-ebooks.info/

Even if you aren’t Norwegian, you have to admit this is a pretty incon-
venient route. Unless, of course, you fancy a very long pub crawl through
England followed by a long route around Amsterdam (in case the wife is in
the car?).

GPS indeed.
But it isn’t just inconvenience that bothers users. Figure 1.2 represents

data loss, one of the most insidious types of failures. Luckily, this bug was
found and fixed before it managed to bite a real user.

The Case for Software Quality 5

FIGURE 1.2 A loss of data and a problem with the menus.

Excel manages to corrupt the open file, causing the data to disappear.
An interesting side effect is that the memory corruption is so bad that the
application itself struggles, manifested by the menus disappearing along
with the data. Clearly, the user’s angst at the blank spreadsheet (sans the
three lone integers in the first row; were they left simply to remind the user
of what she lost?) is eclipsed only by her shock at the total absence of any
menus or menu items. She may look to the menus for hope to recover her
lost data, but she will be sorely disappointed.

Advantage…software.
Sometimes failures tip the scales toward users, and it is the

producers/purveyors of software who suffer. Consider Figure 1.3 from a
web app that provides wireless Internet access to hotel guests. Look

www.it-ebooks.info

http://www.it-ebooks.info/

carefully at the URL and find the CGI parameter “fee.” By exposing this to
the user, it is changeable by the user. It’s doubtful that the honor system
was what the developer had in mind for collecting payment.

6 Exploratory Software Testing

FIGURE 1.3 The exposed CGI parameter unintentionally makes payment optional.

There are any number of folks making money on this application. The
good folks who wrote the libraries upon which the web app is built sold
them to the good folks who wrote the web app who sold it to the hotel who
then (via said web app) sell the ability to connect to the Internet to their
guests. But all this ends up being for nothing for the poor hotel.

Notice the URL and the CGI parameter “fee” (conveniently circled),
which has a value of 8.95. Not a bad deal for Internet access, eh? But by dis-
playing the value in the URL, they may as well have called the parameter
“free” rather than “fee” because simply changing it to 0.00 and hitting enter
will accomplish the bargain of the year. Not enough? Well, change it to a
negative number and you’ll lend truth to William Shatner’s (the vociferous
spokesman for priceline.com) claim that you really can get a good deal on a
hotel.

Other bugs are out to hurt users in ways that simply destroy their pro-
ductivity. There’s nothing like ruining the day of a few thousand users the
way the glitch in Figure 1.4 did. This is an example of “missed a spot”: a

www.it-ebooks.info

http://www.it-ebooks.info/

The Case for Software Quality 7

well-tested feature where one scenario was overlooked, only to have it
inconvenience a few thousand users. Luckily in this case, they were
employees (the author included) of the software vendor itself.

FIGURE 1.4 A million plus emails creates a huge problem for the thousands of people who have to
take the time to delete them.

This bug is actually intended functionality gone horribly wrong.
Outlook has a useful feature that allows a sender to recall a message that
was sent in error. The problem is that this particular message was sent from
a distribution list email address that contains a few thousand people. The
sender, using the distribution list, made a mistake in the email and dutifully
recalled it. However, the many thousand message recalls then came back to
the distribution list, which, by design, Outlook sent to every email address in
the distribution list. The result: thousands of people getting thousands of
emails. A considerable productivity sink when you account for how long it
takes to press the Delete key a few thousand times.10

10 This is a real bug experienced firsthand by the author courtesy of a then-1,275 member mail-
ing list (bluehat…an internal security conference held at Microsoft). This means 1,275 people
got 1,275 emails each. Worse, someone wrote a script to clean said email inboxes and distrib-
uted the script, only to recall it because instead of fixing the problem, it actually made it
worse.

www.it-ebooks.info

http://www.it-ebooks.info/

And then there are the small inconveniences, the things that make you
go hmm, as shown in Figure 1.5. This is a montage of various error mes-
sages often displayed to show just how confused the software is or as the
last gasp of the software before it dies completely. I am not the only tester I
know who collects these as reminders of why testing is so important.

8 Exploratory Software Testing

FIGURE 1.5 A montage of software failures. Many testers collect such snapshots as they make great
wallpaper.

Is it any wonder that software developers and drug dealers share the
same moniker, user, for their customers?11 We don’t call them something
sweet like sponsor, customer, client, or patient, the way other industries do.
We use the same term as those folks who knowingly sell something bad and
rely on addiction to bring the suckers back! Hey user, how about another
hit, uh, I mean upgrade!

Bugs are a taint on the magic of software. As we weave software’s
magic to solve increasingly difficult and important problems, we must
study these mistakes and misfirings so that we better understand how to

11 I am not the first person to point out that drug dealers and software developers use the term
user for their clientele. However, I couldn’t track down the original source. I do know one
thing: The moment we start calling them johns, I will leave this profession and never return.
Sharing a term with drug dealers is one thing, but with pimps it is quite another.

www.it-ebooks.info

http://www.it-ebooks.info/

minimize and mitigate the taint of bugs. This book is about a tester’s view
on accomplishing just that: Understanding how bugs manifest and ways to
go about finding them so that the promise of software’s magic can be ful-
filled.

Conclusion
Science created the magic of software, and now the magic of software is cre-
ating new science. We’re going to need this magic to solve many of the
world’s most pressing problems, from overpopulation to global warming to
curing disease and extending human life. Given this crucial role for soft-
ware, it is imperative that software quality be as high as possible. The fail-
ures of the past are simply no longer acceptable.

In the next chapter, we discuss the various defect-prevention and
detection strategies to help us understand how manual testing fits into the
overall strategy for achieving high-quality software. Later chapters discuss
the details of what strategic, thoughtful manual testing entails.

Exercises

1. Name some ways in which software has changed the world.
Think about the previous generation or even the way things were
20 years ago.
a. How is technology changing the way children are raised?
b. How is technology changing the way teenagers interact with their

peers?
c. How has technology changed business? Government?
d. Can you name five negatives about technology and software?

2. Spend a few moments with your favorite search engine and experiment
with search terms similar to “software failure.” See whether you can
find examples of the following:
a. The software of a famous vendor failed catastrophically.
b. A software failure caused loss of human life.
c. It was argued that software threatened the American democracy.
d. The financial costs attributed to software failure exceed $1 billion.
e. A software failure affected more than 10,000 people, 100,000 people,

and more.

The Case for Software Quality 9

www.it-ebooks.info

http://www.it-ebooks.info/

3. How will software play a role in helping solve some of the hardest of
the world’s problems? If you consider global warming or a cure for can-
cer, how important is a tool like software to people who research solu-
tions to these problems?

4. Look again at the example bug using Microsoft Outlook’s message-
recall feature. There were 1,275 people on the bluehat mailing list at the
time this screenshot was taken. How many emails did that generate?
Try to form a theory of how Microsoft managed to miss this bug.

10 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2
The Case for Manual Testing

“There are two ways to write error-free programs; only the third one works.”
—Alan J. Perlis

The Origin of Software Bugs
The origin of software bugs begins with the very origin of software devel-
opment itself. It’s clearly not the case that we started out with perfect soft-
ware and invented ways to screw it up.1 Indeed, the term bug has been in
common use within software development from the inception of the disci-
pline2 and is a nomenclature that is used today in every office, garage, dorm
room, data center, laboratory, bedroom, cafe, and every other place where
software is developed. The first software had bugs, the latest software has
bugs, and so have all the bits and bytes in between. Software is not, and
likely never will be, bug free.

It’s interesting to note that Hopper’s moth (see the second footnote)
was not a bug actually created by a programmer. Instead, it was an opera-
tional hazard that the developers didn’t consider in their design. As we
shall see in later chapters, a developer’s failure to understand, predict, and
test potential operational environments continues to be a main source of
software failure. Unfortunately, the answer is more complex than closing
the windows to keep out the moths. But let’s not get ahead of ourselves.
We’ll talk about programmer-created bugs and bugs that creep in through
the operational environment throughout this book.

1 My late mentor Harlan Mills had an interesting take on this: “The only way for errors to
occur in a program is by being put there by the author. No other mechanisms are known.
Programs can’t acquire bugs by sitting around with other buggy programs.”

2 According to Wikipedia, the creation of the term bug has been erroneously attributed to one
of the earliest and most famous of software developers, Grace Hopper, who, while reacting to
a moth that had managed to imbed itself into a relay, called it a bug. Read
http://en.wikipedia.org/wiki/Software_bug for earlier uses of the term in hardware,
mechanics, and even by Thomas Edison himself.

www.it-ebooks.info

http://en.wikipedia.org/wiki/Software_bug
http://www.it-ebooks.info/

Preventing and Detecting Bugs
In light of inevitable failure, it seems appropriate to discuss the various
ways to keep bugs out of the software ecosystem so as to minimize failures
and produce the best software possible. In fact, there are two major cate-
gories of such techniques: bug prevention and bug detection.

Preventing Bugs
Bug-prevention techniques are generally developer-oriented and consist of
things such as writing better specs, performing code reviews, running static
analysis tools, and performing unit testing (which is often automated). All
of these prevention techniques suffer from some fundamental problems
that limit their efficacy, as discussed in the following subsections.

The “Developer Makes the Worst Tester” Problem
The idea that developers can find bugs in their own code is suspect. If they
are good at finding bugs, shouldn’t they have known not to write the bugs
in the first place? Developers have blind spots because they approach
development from a perspective of building the application. This is why
most organizations that care about good software hire a second set of eyes
to test it. There’s simply nothing like a fresh perspective free from develop-
ment bias to detect defects. And there is no replacement for the tester atti-
tude of how can I break this to complement the developer attitude of how can
I build this.

This is not to say that developers should do no testing at all. Test-driven
development or TDD is clearly a task meant as a development exercise, and
I am a big believer in unit testing done by the original developer. There are
any number of formatting, data-validity, and exception conditions that need
to be caught while the software is still in development. For the reasons
stated previously, however, a second set of eyes is needed for more subtle
problems that otherwise might wait for a user to stumble across.

The “Software at Rest” Problem
Any technique such as code reviews or static analysis that doesn’t require
the software to actually run, necessarily analyzes the software at rest. In
general, this means techniques based on analyzing the source code, object
code, or the contents of the compiled binary files or assemblies. Unfortun-
ately, many bugs don’t surface until the software is running in a real opera-
tional environment. This is true of most of the bugs shown previously in
Chapter 1, “The Case for Quality Software”: Unless you run the software
and provide it with real input, those bugs will remain hidden.

The “No Data” Problem
Software needs input and data to execute its myriad code paths. Which code
paths actually get executed depends on the inputs applied, the software’s
internal state (the values stored in internal data structures and variables),

12 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

The Case for Manual Testing 13

and external influences such as databases and data files. It’s often the accu-
mulation of data over time that causes software to fail. This simple fact lim-
its the scope of developer testing, which tends to be short in duration.

Perhaps tools and techniques will one day emerge that enable develop-
ers to write code without introducing bugs.3 Certainly it is the case that for
narrow classes of bugs such as buffer overflows4 developer techniques can
and have driven them to near extinction. If this trend continues, the need
for a great deal of testing will be negated. But we are a very long way,
decades in my mind, from realizing that dream. Until then, we need a sec-
ond set of eyes, running the software in an environment similar to real
usage and using data that is as rich as real user data.

Who provides this second set of eyes? Software testers provide this
service, using techniques to detect bugs and then skillfully reporting them
so that they get fixed. This is a dynamic process of executing the software in
varying environments, with realistic data and with as much input variation
as can be managed in the short cycles in which testing occurs. Such is the
domain of the software tester.

Detecting Bugs
Testers generally use two forms of dynamic analysis: automated testing
(writing test code to test an application) and manual testing (using shipping
user interfaces to apply inputs manually).

Automated testing carries both stigma and respect.
The stigma comes from the fact that tests are code, and writing tests

means that the tester is necessarily also a developer. Can a developer really
be a good tester? Many can, many cannot, but the fact that bugs in test
automation are a regular occurrence means that they will spend significant
time writing code, debugging it, and rewriting it. Once testing becomes a
development project, one must wonder how much time testers are spend-
ing thinking about testing the software as opposed to maintaining the test
automation. It’s not hard to imagine a bias toward the latter.

The respect comes from the fact that automation is cool. One can write a
single program that will execute an unlimited number of tests and find tons
of bugs. Automated tests can be run and then rerun when the application
code has been churned or whenever a regression test is required.
Wonderful! Outstanding! How we must worship this automation! If testers

3 In my mind, I picture the ultimate developer bug-finding tool to work on their code as they
type. It will work in a way similar to spell checkers for documents. The moment a developer
types a bug into the code editor, the errant fragment will be underlined or, perhaps, corrected
automatically. The whole point is that we place the detection of the bug as close as possible to
the creation of the bug so that the bug doesn’t get into the software at all. The less time a bug
lives, the better off we’ll all be. But until such technology is perfected, we’ll have to keep on
testing. We’re in this for the long haul!

4 Buffer overflows are found by injecting more data into an input field than the underlying
code can handle. Their cause and specific ways to find them are explained in How to Break
Software Security (Addison-Wesley, 2004) on page 41.

www.it-ebooks.info

http://www.it-ebooks.info/

are judged based on the number of tests they run, automation will win
every time. If they are based on the quality of tests they run, it’s a different
matter altogether.

The kicker is that we’ve been automating for years, decades even, and
we still produce software that readily falls down when it gets on the desk-
top of a real user. Why? Because automation suffers from many of the same
problems that other forms of developer testing suffers from: It’s run in a
laboratory environment, not a real user environment, and we seldom risk
automation working with real customer databases because automation is
generally not very reliable. (It is software after all.) Imagine automation that
adds and deletes records of a database—what customers in their right mind
would allow that automation anywhere near their real databases? And
there is one Achilles heel of automated testing that no one has ever solved:
the oracle problem.

The oracle problem is a nice name for one of the biggest challenges in
testing: How do we know that the software did what it was supposed to do when
we ran a given test case? Did it produce the right output? Did it do so with-
out unwanted side effects? How can we be sure? Is there an oracle we can
consult that will tell us—given a user environment, data configuration, and
input sequence—that the software performed exactly as it was designed to
do? Given the reality of imperfect (or nonexistent) specs, this just is not a
reality for modern software testers.

Without an oracle, test automation can find only the most egregious of
failures: crashes, hangs (maybe), and exceptions. And the fact that automa-
tion is itself software often means that the crash is in the test case and not in
the software! Subtle/complex failures are missed. One need look no further
than the previous chapter to see that many such crucial failures readily slip
into released code. Automation is important, but it is not enough, and an
overreliance on it can endanger the success of a product in the field.

So where does that leave the tester? If a tester cannot rely on developer
bug prevention or automation, where should she place her hope? The only
answer can be in manual testing.

Manual Testing
Manual testing is human-present testing. A human tester uses her brain, her
fingers, and her wit to create the scenarios that will cause software either to fail
or to fulfill its mission. Human-present testing allows the best chance to create
realistic user scenarios, using real user data in real user environments and still
allowing for the possibility of recognizing both obvious and subtle bugs.

Manual testing is the best choice for finding bugs related to the under-
lying business logic of an application. Business logic is the code that imple-
ments user requirements; in other words, it is the code that customers buy
the software for. Business logic is complex and requires a human in the loop
to verify that it is correct, a task that automation is too often ill-suited to
accomplish.

14 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

Perhaps it will be the case that developer-oriented techniques will
evolve to the point that a tester is unnecessary. Indeed, this would be a
desirable future for software producers and software users alike, but for the
foreseeable future, tester-based detection is our best hope at finding the
bugs that matter. There is simply too much variation, too many scenarios,
and too many possible failures for automation to track it all. It requires a
“brain in the loop.” This is the case for this decade, the next decade, and
perhaps a few more after that.

I wish it was just that easy, but historically the industry has not been
good at manual testing. It’s too slow, too ad hoc, not repeatable, not repro-
ducible, not transferable, and there isn’t enough good advice out there for
testers to get good at it. This has created a poor reputation for manual test-
ing as the ugly stepchild of development. It’s unfortunate that this is the
case, but such is the hand we are dealt.

It’s time we put the best technology available into the process of man-
ual testing. This is the subject of exploratory testing that this book
addresses. I want the industry to get past the idea of ad hoc manual testing
and work toward a process for exploratory testing that is more purposeful
and prescriptive. It should be a process where manual testing requires care-
ful preparation yet leaves room for intelligent decision making during test-
ing. Manual testing is too important to treat it with any less respect.

We may look to a future in which software just works, but if we achieve
that vision, it will be the hard work of the manual testers of this time that
makes it possible.

Scripted Manual Testing
Many manual testers are guided by scripts, written in advance, that guide
input selection and dictate how the software’s results are to be checked for
correctness. Sometimes scripts are specific: Enter this value, press this but-
ton, check for that result, and so forth. Such scripts are often documented in
spreadsheet tables and require maintenance as features get updated
through either new development or bug fixes. The scripts serve a secondary
purpose of documenting the actual testing that was performed.

Often, scripted manual testing is too rigid for some applications, or test
processes and testers take a less-formal approach. Instead of documenting
every input, a script may be written as a general scenario that gives some
flexibility to the testers while they are running the test. At Microsoft, the
folks who manually test Xbox games often do this. So an input would be
“interact with the mage,” without specifying exactly the type of interaction
they must perform. Thus it is possible that scripted testing can be as rigid or
as flexible as necessary, but for the flexibility to work, testers are going to
need very specific advice for how to handle choice and uncertainty, and this
is more the domain of exploratory testing.

In this book, we are only interested in the flexible type of scripted
testing.

The Case for Manual Testing 15

www.it-ebooks.info

http://www.it-ebooks.info/

Exploratory Testing
When the scripts are removed entirely (or as we shall see in later chapters,
their rigidness relaxed), the process is called exploratory testing. Testers may
interact with the application in whatever way they want and use the infor-
mation the application provides to react, change course, and generally
explore the application’s functionality without restraint. It may seem ad hoc
to some, but in the hands of a skilled and experienced exploratory tester,
this technique can prove powerful. Advocates argue that exploratory test-
ing allows the full power of the human brain to be brought to bear on find-
ing bugs and verifying functionality without preconceived restrictions.

Testers using exploratory methods are also not without a documenta-
tion trail. Test results, test cases, and test documentation are generated as
tests are being performed instead of being documented ahead of time in a
test plan. Screen capture and keystroke recording tools are ideal for record-
ing the result of exploratory testing. Just because it’s manual testing doesn’t
mean we can’t employ automation tools as aids to the process. Indeed, even
those who “handcraft” furniture do so with the assistance of power tools.
Handcrafting test cases should be no different. Manual testers who use
debug builds, debuggers, proxies, and other types of analysis tools are still
doing manual testing; they are just being practical about it.

Exploratory testing is especially suited to modern web application
development using agile methods.5 Development cycles are short, leaving
little time for formal script writing and maintenance. Features often evolve
quickly, so minimizing dependent artifacts (like pre-prepared test cases) is a
desirable attribute. If the test case has a good chance of becoming irrelevant,
why write it in the first place? Are you not setting yourself up for spending
more time maintaining test cases than actually doing testing?

The drawback to exploratory testing is that testers risk wasting a great
deal of time wandering around an application looking for things to test and
trying to find bugs. The lack of preparation, structure, and guidance can
lead to many unproductive hours and retesting the same functionality over
and over, particularly when multiple testers or test teams are involved.
Without documentation, how do testers ensure they are getting good
coverage?

This is where guidance comes into play. Exploratory testing without
good guidance is like wandering around a city looking for cool tourist
attractions. It helps to have a guide and to understand something about
your destination (in our case, software) that can help your exploration to be
more methodical. Looking for beaches in London is a waste of time.
Looking for medieval architecture in Florida is equally so. Surely what you
are testing is just as important to your strategy as how you test it.

16 Exploratory Software Testing

5 The number of proponents of exploratory testing is large enough now that its case no longer
needs to be argued, particularly among the agile development community. However, I argue
it here anyway to help those testers who still have to convince their management.

www.it-ebooks.info

http://www.it-ebooks.info/

There are two types of guidance for exploratory testers to help in the
decision-making process: exploratory testing in the small, which aids in
local decision making while running tests; and exploratory testing in the large,
which helps testers design overall test plans and strategies. Both are sum-
marized here and covered in detail in Chapter 3, “Exploratory Testing in the
Small,” and Chapter 4, “Exploratory Testing in the Large.” Finally, a third
class of exploratory testing that combines elements of exploration with
scripted manual testing is discussed in Chapter 5, “Hybrid Exploratory
Testing Techniques.”

Exploratory Testing in the Small
Much of what a manual tester does is about variation. Testers must choose
which inputs to apply, what pages or screens to visit, which menu items to
select, and the exact values to type into each input field they see. There are
literally hundreds of such decisions to make with every test case we run.

Exploratory testing can help a tester make these decisions. And when a
tester uses exploratory testing strategy to answer these sorts of questions, I
call this exploratory testing in the small because the scope of the decision is
small. A tester is looking at a certain web page or dialog box or method and
needs focused advice about what to do for that specific situation. This is
necessarily a localized decision-making process that testers will perform
dozens of times in a single test case and hundreds of times over the course
of a day of testing.

The problem is that many testers don’t know what to do in the variety
of “small” situations that they encounter. Which value do you enter into a
text box that accepts integers? Is the value 4 better (meaning more likely to
find a bug or force a specific output) than the value 400? Is there anything
special about 0 or about negative numbers? What illegal values might you
try? If you know something about the application—for example, that it is
written in C++ or that it is connected to a database—does that change the
values you might try? What, indeed, is the sum total of exploratory testing
wisdom that we can use to help us make the right small decisions as we
test?

Chapter 3 is devoted to passing along some of this wisdom. I’ll be the
first to admit, that most of it is not mine. I’ve been lucky enough to work
around some of the best software testers to grace this planet. From IBM to
Ericsson to Microsoft, Adobe, Google, Cisco, and many more names far less
recognizable, I’ve gathered what I think is a large portion of this advice and
I reproduce it here. Much of this information was embodied in How to Break
Software, and so readers of that book can consider this an update to the
body of knowledge that was published there. But as the attitude of that
book was about finding bugs, the purpose of this book is much broader.
Here we are interested in more than finding bugs. We want to force soft-
ware to exhibit its capabilities and gain coverage of the application’s fea-
tures, interfaces, and code and find ways to put it through its paces to
determine its readiness for release.

The Case for Manual Testing 17

www.it-ebooks.info

http://www.it-ebooks.info/

Exploratory Testing in the Large
There is more to testing, however, than making all the small decisions cor-
rectly. In fact, it is possible to nail all the small decisions and still not have
an overall set of tests that confirm (or reject) release readiness. The sum
total of all the test cases is definitely more than the individual parts. Test
cases are interrelated, and each test case should add to the others and make
the entire set of test cases better in some substantive, measurable (or at least
arguable) way.

This points to the need for a strategy that guides test case design and
exploration. Which features should a single test case visit? Are there certain
features or functions that must be tested together? Which feature should be
used first, and how do we decide which subsequent features to test? If there
are multiple testers on a project, how can we make sure their strategies
complement each other and they don’t end up testing the same things?
How does an exploratory tester make these larger scope decisions about
overall test cases and testing strategy?

I call this exploratory testing in the large because the scope of the deci-
sions to be made encompasses the software as a whole instead of a single
screen or dialog. The decisions made should guide how an application is
explored more than how a specific feature is tested.

In Chapter 4, I use a tourism metaphor to guide exploratory testing in
the large. Think about it this way: As a tourist visiting a new city, you will
use in-the-large advice to choose which restaurant to visit, but you will use
in-the-small advice to choose what meal and drink to order. In-the-large
advice will help plan your entire day and advise you on how to plan your
entire stay, the landmarks you visit, the shows you see, and the restaurants
at which you dine. In-the-small advice will help you navigate each of these
events and plan the subtle details that a larger plan will always leave out.
By perfecting the combination of the two, you’ve entered the world of an
expert exploratory software tester.

Combining Exploration and Scripting
It isn’t necessary to view exploratory testing as a strict alternative to script-
based manual testing. In fact, the two can co-exist quite nicely. Having for-
mal scripts can provide a structure to frame exploration, and exploratory
methods can add an element of variation to scripts that can amplify their
effectiveness. The expression opposites attract is relevant in the sense that
because formal scripts and exploratory methods are at opposite extremes
of the manual testing spectrum, they actually have a lot to offer each other.
If used correctly, each can overcome the other’s weaknesses, and a tester
can end up in the happy midpoint of a very effective combination of
techniques.

The best way that I have found to combine the two techniques is to start
with formal scripts and use exploratory techniques to inject variation into

18 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

them. This way, a single script may end up being translated into any num-
ber of actual exploratory test cases.

Traditional script-based testing usually involves a starting point of user
stories or documented end-to-end scenarios that we expect our eventual
users to perform. These scenarios can come from user research, data from
prior versions of the application, and so forth, and are used as scripts to test
the software. The added element of exploratory testing to traditional sce-
nario testing widens the scope of the script to inject variation, investigation,
and optional user paths.

An exploratory tester who uses a scenario as a guide will often pursue
interesting alternative inputs or pursue some potential side effect that is not
included in the script. However, the ultimate goal is to complete the sce-
nario so that these testing detours always end up back on the main user
path documented in the script. The detours from the script can be chosen
based on structured ways of modifying specific steps in the script or by
exploratory excursions off the script and then back again. Chapter 5 is dedi-
cated entirely to script-based exploratory testing because it is one of the key
tools in the manual tester’s arsenal of techniques.

The techniques in Chapters 3 through 5 have been applied in a number
of case studies and trials throughout Microsoft, and the results are pre-
sented in Chapter 6, “Exploratory Testing in Practice,” as experience reports
written by the testers and test leads involved in these projects. Chapter 6
examines how the exploratory testing techniques were applied to several
different classes of software from operating system components to mobile
applications to more traditional desktop and web software. Also, special
tours written specifically for a particular project are described by their
authors.

The remainder of the book highlights essays on, respectively, building a
testing career and the future of testing, followed by past and current essays
and papers while I was a professor at Florida Tech and an architect at
Microsoft. Since I have now left Microsoft, this book may be the only place
that the latter material can be found.

Conclusion
The world of manual exploratory testing is one of the most challenging and
satisfying jobs in the IT industry. When done properly, exploratory testing
is a strategic challenge and a match of wits between the manual tester and
an application to discover hidden bugs, usability issues, security concerns,
and so forth. For far too long, such exploration has been done without good
guidance and has been the realm of experts who have learned their craft
over many years and decades. This book contains much of that experience
and wisdom in the hopes that many new experts emerge quickly, allowing

The Case for Manual Testing 19

www.it-ebooks.info

http://www.it-ebooks.info/

higher-quality testing and thus higher-quality applications to enter the tech-
nology ecosystem.

We need the human mind to be present when software is tested. The
information in this book is aimed at focusing the human mind so that test-
ing is as thorough and complete as possible.

Exercises

1. Why can’t we just build software to test software? Why isn’t automa-
tion the answer to the software-testing problem?

2. What type of code is automation good at testing? What type of code
requires manual testing? Try to form a theory to explain why.

3. What types of bugs is automation good at detecting? What types of
bugs is automation bad at detecting? Give examples.

20 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3
Exploratory Testing in the Small

“Any sufficiently advanced bug is indistinguishable from a feature.”
—Rich Kulawiec

So You Want to Test Software?
The above quote is one of my favorites and captures much of the complex-
ity of software testing in a single sentence. If we can’t tell features from
bugs, how can we possibly do a good job of testing? If the product’s specifi-
cation and documentation aren’t good enough to tell bugs from features,
isn’t testing impossible? If the symptoms of failure are so subtle as to evade
both automated and manual attempts to expose them, isn’t testing useless?

Imagine the following job description and ask yourself whether you
would apply for it:

Software tester wanted. Position requires comparing an insanely com-
plicated, poorly documented product to a nonexistent or woefully
incomplete specification. Help from original developers will be mini-
mal and given grudgingly. Product will be used in environments that
vary widely with multiple users, multiple platforms, multiple lan-
guages, and other requirements yet unknown but just as important.
We’re not quite sure how to define them, but security and performance
are paramount, and post release failures are unacceptable and could
cause us to go out of business.

Okay, so it’s tongue-in-cheek, but it is close enough to the mark that I
bet anyone who has been in the industry long enough can appreciate the
accuracy of this job description. For those of you lucky enough for this to
seem like a foreign concept, you have my congratulations.

Testing such a complex product as software against incomplete expecta-
tions for nebulous quality concerns seems like an impossible ambition.
Indeed, the lack of good information makes testing a lot harder than it has
to be, and all testers suffer from this. However, we’ve been testing software

www.it-ebooks.info

http://www.it-ebooks.info/

for several decades, and notwithstanding the bugs shown in Chapter 1,
“The Case for Software Quality,” that software has managed to change the
world. Clearly, there is a lot we know about testing.

So what is it that software testers actually do when they approach this
impossible task? Well, the first step is to appreciate the enormity and com-
plexity of testing. Approaching it lightly and assuming that it will be easy is
a really great way to fail. Admitting that no matter what you do will be
inadequate is the right beginning attitude. Testing is infinite; we’re never
really done, so we must take care to prioritize tasks and do the most impor-
tant things first. Because testing really is infinite, we’ll never be finished.
The goal is to get to the point that when the software is released, everything
we have not done is less important than everything we have done. If we
achieve this, we help minimize the risk of releasing too early.

Testing is about making choices. It’s about understanding the complexi-
ties involved in running tests and analyzing the information available to
help us choose between the many possible variables inherent in the testing
process. This chapter is about those choices in the small. It covers the little
choices that exploratory testers make as they explore an application’s func-
tionality, from how to decide which inputs to enter into a text box and how
to interpret error messages, to understanding the relationship between
prior inputs and those you might choose to enter later. In subsequent chap-
ters, we discuss larger issues of exploration, but we first need to acquire the
tools necessary to make the small decisions wisely.

The one nice thing about exploratory testing in the small is that there
isn’t a lot of information necessary to perform these tasks. In-the-small test-
ing is really about encapsulating testing experience and expertise with
knowledge of how software is composed and how it executes in its opera-
tional environment so that we can make good choices during testing. These
are very tactical techniques meant to solve small problems that every tester
faces many times every day. They are not intended as a complete testing
regime or even particularly useful for overall test case design. Those
in-the-large issues are presented in the next two chapters.

The information presented in this chapter breaks choices into five spe-
cific properties of software that an exploratory tester must reason about as
she tests: inputs, state, code paths, user data, and execution environment.
Even taken individually, each of these presents a testing problem too large
to solve with finite resources. Taken as a whole, the process of testing is
mind bogglingly enormous. Thankfully, there is a great deal of guidance
about how to approach this problem, and this chapter presents a collection
of specific tactics that describe this guidance and how to use it to make in-
the-small testing decisions.

22 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

Exploratory Testing in the Small 23

Testing Is About Varying Things
Testers are tasked with answering questions such as the following:

• Will the software work as designed?
• Will the software perform the functions for which the user bought it?
• Will the software perform these functions fast enough, secure enough,

robust enough, and so on?

Testers achieve these tasks by putting the software in some specific
operational environment and then applying input that in some way mimics
expected usage. This is where the trouble starts and the whole problem of
infinity hits well-meaning testers square in the face. There are too many
inputs to apply them all. There are too many environments to replicate
them all. In fact, the number of variables of which there are “too many” is
disturbing. This is why testing is about varying things. We must identify all
the things that can be varied during a test and make sure we make smart
decisions when we choose specific variations and exclude (out of necessity)
other variations.

This reduces testing to a task of selecting a subset of inputs (and envi-
ronments, etc.), applying those, and then trying to infer that this is some-
how good enough. Eventually, the software has to ship, and testing can no
longer impact the shipping code. We have a finite time to perform what is
ultimately an infinite task. Clearly, our only hope lies in how we select
those things that we can vary. We select the right ones, and we help ensure
a good product. We select the wrong ones, and users are likely to experi-
ence failures and hate our software. A tester’s task is crucial and impossible
at the same time!

One can easily see that completely ad hoc testing is clearly not the best
way to go about testing. Testers who learn about inputs, software environ-
ments, and the other things that can be varied during a test pass will be bet-
ter equipped to explore their application with purpose and intent. This
knowledge will help them test better and smarter and maximize their
chances of uncovering serious design and implementation flaws.

User Input
Imagine testing a huge application like Microsoft Office or a feature-rich
website like Amazon. There are so many possible inputs and input combi-
nations we could potentially apply that testing them all simply isn’t an
option.

It turns out that it is even harder than it seems. Wherever a tester turns,
infinite possibilities hit them head on. The first of these infinite sets are
inputs.

www.it-ebooks.info

http://www.it-ebooks.info/

What You Need to Know About User Input
What is an input? A general definition might be something like this:

An input is a stimulus generated from an environment that causes the
application under test to respond in some manner.

This is very informal but good enough for our purposes. The key point
is that an input originates from outside the application and causes some
code in the application to execute. Things such as a user clicking a button is
an input, but typing text into a text box is not until that text is actually
passed to the application and it gets the opportunity to process it.1 Inputs
must cause the software to execute and respond in some manner (including
the null response).

Inputs generally fall into two categories: atomic input and abstract input.
Things such as button clicks, strings, and the integer value 4 are atomic
inputs; they are irreducible, single events. Some atomic inputs are related,
and it is helpful to treat them as abstract input for the purposes of test selec-
tion. The integer 4 and the integer 2048 are both specific values (that is,
atomic input). However, a tester could have chosen 5 or 256 to enter
instead. It makes better sense to talk about such inputs in abstract terms so
that they can be reasoned about as a whole. We can, for example, talk about
an abstract input length for which we could enter any of the atomic values
from 1 to 32768.

Variable input requires abstraction because of the large number of possi-
ble values that variable input can assume. Positive integers, negative integers,
and character strings (of any significant length) are all practically infinite in that
during a given testing cycle, we cannot apply them all. Without such exhaus-
tive testing, we cannot ensure the software will process them all correctly.2

Any specific application accepts an arbitrarily large number of atomic
inputs. Applying them all is unlikely, so from an input point of view, testing
is about selecting a subset of possible inputs, applying them, and hoping
that the subset will cause all the failures to surface and that we can assume

24 Exploratory Software Testing

1 This is assuming that the text box is separate from the application under test and can be legit-
imately viewed as a preprocessor of inputs. Of course, you may specifically want to test the
functionality of the text box, in which case everything you type into it is an atomic input. It
all depends on how you view the scope of the application.

2 Treating two or more atomic inputs the same is known as equivalence classing those inputs.
The idea is that there is no reason to submit the atomic input 4 and then separately submit 2,
because they are in the same equivalence class. If you test one, you don’t need to test the
other. I once heard a consultant claim that equivalence classes for testing was a myth (or
maybe it was illusion, I don’t recall). His claim was that you can’t tell whether 2 and 4 are the
same or different until you apply them both. From a completely black box point of view, this
is technically true. But common sense would have to be completely abandoned to actually
plan your tests around such a narrow view of the world. Why not check the source code and
find out for sure? If the inputs cause the same code path to be generated, and both fit into
their target data structures, they can be treated as equivalent for testing purposes. Don’t
allow stubbornness to force you into testing the same paths over and over without any real
hope of finding a bug or exploring new territory.

www.it-ebooks.info

http://www.it-ebooks.info/

the software is good enough when the other, previously untested inputs are
submitted by actual users. To do this well, software testers must hone their
skills in selecting one input as a better test than another input. In this and subse-
quent chapters, we talk about strategies to accomplish this.

But it gets harder than that. If all we had to worry about was the selec-
tion of a set of atomic inputs, testing would be much easier than it actually
is. Two additional problems complicate input selection far more.

The first is the fact that inputs can often team up on software to cause it
to fail. In fact, the combination of two or more inputs can often cause an
application to fail even when the software has no problem with those
inputs individually. You may perform a search for CDs just fine. You may
independently perform a search for videos just fine. But when you search
for both CDs and videos, the software goes pear shaped. Testers must be
able to identify which inputs interact with one another and ensure they appear
together in a single test case to have confidence that these behaviors are prop-
erly tested.

Finally, inputs can also cause problems depending on the order in which
they are applied. Inputs a and b can be sequenced ab, ba, aa, or bb. We could
also apply three or more consecutive inputs, which creates even more
sequences (aaa, aab, aba, …). And when more than two inputs are involved,
there are even more sequence choices. If we leave out any specific sequence,
it may very well be the one that causes a failure. We can order a book and
check out, or we can order two books and check out, or we may choose to
check out and then add to our order and check out a second time. There are
too many options to contemplate (much less test) them all. Testers must be
able to enumerate likely input sequences and ensure they get tested to have
confidence that the software is ready for real users. Again, this is a topic we
turn to in this and subsequent chapters.

How to Test User Input
The cursor sits in a text box, happily blinking away waiting for an input to
be entered. Every tester faces this situation many times during the course of
a day’s testing. What do you do? What strategy do you employ to decide on
one input over another? What are all the considerations? It never ceases to
amaze me that there is no one place a new tester can go to learn these
strategies. It also amazes me that I can ask 10 testers what they would do
and get 12 different answers. It’s time these considerations get documented,
and this is my attempt to do so.

The place to begin is first to realize that your software is not special.
There is a temptation for testers to imagine that the software they test is
somehow different from every set of bits ever assembled into a contiguous
binary. This simply is not the case. All software, from operating systems,
APIs, device drivers, memory-resident programs, embedded applications,
and system libraries, to web applications, desktop applications, form-based
UIs, and games, all perform four basic tasks: They accept input, produce

Exploratory Testing in the Small 25

www.it-ebooks.info

http://www.it-ebooks.info/

output, store data, and perform computation. They may exist in vastly
different operational environments. Inputs may be constructed and trans-
mitted to them in very different ways. Timing may be more of an issue in
some types of applications than others, but all software is fundamentally
the same, and it is this core similarity that I address in this book. Readers
must take this general information and apply it to their own application
using the specific rules that govern how their application accepts input and
interacts with its environment. Personally, I have tested weapons systems
for the U.S. government, real-time security monitors, and antivirus engines,
cellular phone switches, operating systems from top to bottom, web appli-
cations, desktop applications, large server apps, console and desktop game
software, and many other apps that time has expunged from my memory. I
am presenting the core considerations that apply to them all, and will leave
the actual application of the techniques in the capable hands of my readers.

Legal or Illegal Input?
One of the first distinctions to be made is positive versus negative testing.
Are you trying to make sure the application works correctly, or are you
specifically trying to make it fail? There are good reasons to do a lot of both
types of testing, and for some application domains, negative testing is par-
ticularly important, so it helps to have a strategy to think through which
good or bad values to test.

The first way that testers can slice this problem is based on what the
developers think constitutes an illegal input. Developers have to create this
partition very precisely, and they usually do so by writing error-handling
code for what they see as illegal inputs. The decisions they make on how
and when to create error handlers needs to be tested.

It is good to keep in mind that most developers don’t like writing error
code. Writing error messages is rarely cited as the reason people are
attracted to computer science. Developers want to write functional code,
the code that serves as the reason people want to use the software in the
first place. Often, error-handling code is overlooked or quickly (and care-
lessly) written. Developers simply want to get back to writing “real” func-
tional code as quickly as possible, and testers must not overlook this area of
applications because developer’s attitude toward it often ensures it is ripe
with bugs.

Imagine developers writing functional code to receive an input. They
may immediately see the need to check the input for validity and legality,
and therefore they must either (a) stop writing the functional code and take
care of the error handler, or (b) insert a quick comment (for example, “insert
error code here”) and decide to come back to it later. In the former case,
their brains have to context-switch from writing functional code to writing
the error routine and then back again. This is a distracting process and cre-
ates an increased potential for getting it wrong. In the latter case, it isn’t
unheard of to never get back to writing the error code at all, as developers
are busy people. More than once I have seen such “to do” comments left in
published and released software!

26 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

Developers have three basic mechanisms to define error handlers: input
filters, input checks, and exceptions. Here’s how they work from a tester’s
point of view.

Input Filters
Input filters are mechanisms to prevent illegal input from reaching the
application’s mainline functional code. In other words, an input filter is
written to keep bad input out of an application so that there is no need for
the developer to worry about illegal values. If an input reaches the applica-
tion, it is assumed to be a good input, and no further checks need to be
made because input can be processed without worry. When performance is
an issue, this is often the technique developers employ.

Input filters don’t produce error messages (that’s how they are distin-
guished from input checks, which are described next); instead, they quietly
filter out illegal input and pass legal input to the application in question.
For example, a GUI panel that accepts integer inputs may completely
ignore any character or alphabetic input and only display the numeric input
that is typed into its fields (see Figure 3.1).

Exploratory Testing in the Small 27

FIGURE 3.1 This dialog box from PowerPoint allows the user to type numeric input only, thus filter-
ing out invalid characters.

Also, the so-called list box or drop-down box is a type of input filter, in
that it allows only valid inputs to be selected (see Figure 3.2). There is a
clear advantage to developers because they can now write code without
any further checks on input to complicate matters.

FIGURE 3.2 Another way to filter inputs is to allow users to choose from a predefined list of valid
values.

www.it-ebooks.info

http://www.it-ebooks.info/

From a testing point of view, we need to check a couple of things
regarding input filters:

• First, did the developers get it right? If the developers partitioned the
space of legal versus illegal input incorrectly, serious bugs can be the
result. Imagine mistakenly putting an illegal input in the legal category.
This would allow an illegal value into the software’s only line of
defense (assuming that no further checks are made). If a tester suspects
that this is the case, she must write a bug report so that the code gets
fixed.3 The opposite is also serious: Putting a legal input into the illegal
category will cause denial of service and serious user frustration,
because what they are trying to do is perfectly legitimate and the soft-
ware prevents them from doing it.

• Second, can the filter be bypassed? If there is any other way to get input
into the system, or to modify the inputs after they are in the system, the
filter is useless, and developers will need to implement further error
checking. This is a great bug to find before release because serious secu-
rity side effects can be the result. Figure 3.3 shows a modified quantity
value (achieved by editing the HTML source of this particular web
page), which if it is not further checked will result in the user being
charged a negative value and thus rip off the seller who uses this soft-
ware for their online store.

28 Exploratory Software Testing

3 In cases where developers don’t see this as a problem, you might have to do a little more test-
ing to convince them otherwise. Once an illegal input is in the system, apply inputs that
make the software use that illegal input as often and in as many ways as possible to force any
potential bugs to surface. This way you can strengthen your bug report with some more
detailed information that exposes what bad things can happen when illegal inputs get
processed.

FIGURE 3.3 Bypassing input constraints can be dangerous, as this negative number in the Quantity
field shows. This technique is demonstrated in Chapter 3 of How to Break Web Software.

Input Checks
Input checks are part of the mainline code of an application and are imple-
mented as IF/THEN/ELSE structures (or CASE, SELECT structures or
lookup tables). They accept an input, and IF it is valid, THEN allow it to be
processed, ELSE produce an error message and stop processing. The telltale
sign of an input-check implementation is the presence of an error message

www.it-ebooks.info

http://www.it-ebooks.info/

that is generally descriptive and accurately reflects the nature of the invalid-
ity of the input in question.

The error message here is key to the exploratory tester, and my advice
is that each error message should be read carefully for mistakes and for
clues to the mind of the developer. Error messages often describe fairly
exact reasons why the input was invalid and how to fix it. This will give us
new ideas for additional test input to drive other types of error messages to
occur and, perhaps, cases that should result in error but do not.

The key difference between an input check and an exception (which is
covered next) is that the input check is located immediately after the input
is read from an external source. The code for reading the input has as its
successor an IF statement that checks the input for validity. Therefore, the
error message itself can be very precise: “Negative numbers are not
allowed” is such a precise message; it tells the user exactly what was wrong
with the input in question. When error messages are more general, it is an
indication that an exception handler is being used. The topic of exceptions
is tackled next.

Exception Handlers
Exception handlers are like error checks, but instead of checks on individ-
ual inputs, exception handlers are checks on anything that fails in an entire
routine. Error handlers are located at the end of a program or in a separate
file completely and handle any specified errors that are raised while the
software is executing. This means that input violations are handled, but so
is any other failure that can occur, including memory violations and so
forth. By their very nature, exceptions handle a variety of failure scenarios,
not just illegal inputs.

This means that when an error message is produced as a result of an
exception being raised, it will be much more general than the specific word-
ing possible for error checks. Because the exception could be raised by any
line of code in the failing routine for any number of reasons, it’s difficult for
them to be anything more than “an error has occurred” because the handler
code can’t distinguish the exact nature of the problem.

Whenever a tester encounters such an open-ended, general error mes-
sage, the best advice is to continue to test the same function. Reapply the
input that caused the exception or vary it slightly in ways that may also
cause a failure. Run other test cases through the same function. Tripping the
exception over and over is likely to cause the program to fail completely.

Illegal inputs should be either ignored or result in some error message
(either in a popup dialog or written to an error log file or some reserved
area of the UI). Legal inputs should be processed according to the specifica-
tion and produce the appropriate response. Any deviation from this and
you’ve found a legitimate bug.

Normal or Special Input?
There are normal inputs, and then there are special inputs. A normal input
has no special formatting or meaning and is readily digestible by the

Exploratory Testing in the Small 29

www.it-ebooks.info

http://www.it-ebooks.info/

software under test. Normal inputs are those that the developers plan for
and usually the ones that real users favor. Special inputs can come about
through some extraordinary circumstance or by complete coincidence or
accident. For example, a user may mean to type Shift-c into a text field but
accidentally type Ctrl-c instead. Shift-c is an example of a normal input, the
capital C character. But Ctrl-c has a completely different meaning assigned
by, for example, the Windows operating system, to be copy or even cancel.
Pressing Ctrl-c or some other special character in an input field can some-
times cause unexpected or even undesirable behavior.

All Ctrl characters, Alt, and Esc sequences are examples of special char-
acters, and it is a good idea to test a sampling of these characters in your
application and report undesirable behavior as bugs. Testers can also install
special fonts that end users are likely to use and test different languages this
way. Some fonts, such as Unicode and other multibyte character sets, can
cause software to fail if it has been improperly localized to certain lan-
guages. A good place to start is to look at your product’s documentation
and find out what languages it supports; then install the language packs
and font libraries that will enable you to test those special inputs.

Another source of special characters comes from the platform on which
your application is running. Every operating system, programming lan-
guage, browser, runtime environment, and so forth has a set of reserved
words that it treats as special cases. Windows, for example, has a set of
reserved device names such as LPT1, COM1, AUX. When these are typed
into fields where a filename is expected, applications often hang or crash
outright. Depending on the container in which your application runs, the
special characters you type in input fields may be interpreted by the con-
tainer or by your application. The only way to find out for sure is to
research the associated special characters and apply them as test input.

Default or User-Supplied Input?
Leaving text fields blank is an easy way to test. But as easy as it is for the
tester, the same cannot be said of the software under test. Indeed, just
because the tester didn’t do anything doesn’t mean the software doesn’t
have some hard work to do.

Empty data-entry fields or passing null parameters to some API
requires that the software execute its default case. Often, these default cases
are overlooked or poorly thought out. They are also routinely overlooked in
unit testing, so the last defense is the manual tester.

Developers have to deal with nonexistent input because they cannot
trust that all users will enter non-null values all the time. Users can skip
fields either because they don’t see them or don’t realize they require a
value. If there are a lot of data-entry fields (like those on web forms that
ask the user for billing address, shipping address, and other personal
information), the error message may also change depending on which field
was left blank. This, too, is important to test.

30 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

But there is more to explore beyond just leaving fields blank. Whenever
a form has prepopulated values, these are what I call developer-assigned
defaults. For example, you may see the value ALL in a print form field for
the number of pages to print. These represent what developers think are the
most likely values a reasonable user will enter. We need to test these
assumptions, and we need to ensure that no mistakes were made when the
developers selected those values as defaults.

The first thing to try when you see developer-assigned defaults is to
delete the default value and leave the field blank. (This is often a scenario
developers don’t think of. Because they took the time to assign a default,
they don’t imagine a scenario where they have to deal with a missing
value.) Then start experimenting with other values around the default. If
it’s a numeric field, try adding one, try subtracting one. If it is a string, try
changing a few values at the front of the string, try changing some at the
tail of the string, try adding characters, try deleting characters. Try different
strings of the same length and so on and so forth.

Input fields with default values prepopulated are often coded differ-
ently than fields that are presented with no default value at all. It pays to
spend some extra time testing them.

Using Outputs to Guide Input Selection
This section has so far been about how to select inputs, and up to now all
the techniques have been based on choosing inputs according to their desir-
able (or even undesirable) properties. In other words, some properties
(type, size, length, value, and so forth) make them good as test input.
Another way to select an input is to consider the output that it might (or
should) generate when it is applied.

In many ways, this is akin to the behavior of a teenager trying to get
permission of his parents to attend a party. The teen knows that there is one
of two answers (outputs), yes or no, and he asks permission in such a way
as to ensure his parents will favor the former output. Clearly, “Can I go to a
wild and unsupervised rave?” is inferior to “May I join a few friends at
Joey’s?” How one frames the question has a lot to do with determining the
answer.

This concept applies to software testing, as well. The idea is to under-
stand what response you want the software to provide, and then apply the
inputs that you think will cause that specific output.

The first way many testers accomplish this is to list all the major out-
puts for any given feature and make sure they craft test input that produces
those outputs. Organizing the input/output pairs into a matrix is a com-
mon way of making sure that all the interesting situations are covered.

At the highest level of abstraction, a tester can focus on generating ille-
gal outputs or legal outputs, but most of the former will overlap the tech-
nique described earlier concerning the generation of error messages. Some
such overlap is unavoidable, but you should try to focus on varying legal
outputs as much as possible to ensure that new functionality and scenarios
are covered.

Exploratory Testing in the Small 31

www.it-ebooks.info

http://www.it-ebooks.info/

This is a very proactive way of thinking about outputs; testers deter-
mine in advance what output they want the application to generate, and
then explore scenarios that generate the desired response. A second way of
thinking about outputs is more reactive but can be very powerful: Observe
outputs, and then choose inputs that force the output to be recalculated or
otherwise modified.

When the software generates some response for the first time, it is often
the default case: Many internal variables and data structures get initialized
from scratch the first time an output is generated. However, the second (or
subsequent) time a response is generated, many variables will have preex-
isting values based from the prior usage. This means that we are testing a
completely new path. The first time through we tested the ability to gener-
ate an output from an uninitialized state; the second time through we test
the ability to generate the output from a previously initialized state. These are
different tests, and it is not uncommon for one to pass where the other one
fails.

A derivative of the reactive output test is to find outputs that persist.
Persistent outputs are often calculated and then displayed on the screen or
stored in a file that the software will read at some later time. If these values
can be changed, it is important to change them and their properties (size,
type, and so forth) to test regeneration of the values on top of a prior value.
Run tests to change each property you can identify.

The complexity of input selection is only the first of the technical chal-
lenges of software testing. As inputs are continually applied to software,
internal data structures get updated, and the software accumulates state
information in the form of values of internal variables. Next we turn to this
problem of state and how it complicates software testing.

State
The fact that any, some, or all inputs can be “remembered” (that is, stored in
internal data structures) means that we can’t just get by with selecting an
input without taking into account all the inputs that came before it. If we
apply input a, and it changes the state of the application under test, then
applying input a again cannot be said to be the same test. The application’s
state has changed, and the outcome of applying input a could be very dif-
ferent. State impacts whether an application fails every bit as much as input
does. Apply an input in one state and everything is fine; apply that same
input in another state and all bets are off.

What You Need to Know About Software State
One way to think about software state is that we have to take the context
created by the accumulation of all prior inputs into account when we select
future inputs. Inputs cause internal variables to change values, and it is the
combination of all these possible values that comprises the state space of the

32 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

software. This leads us to an informal definition of state as follows:

A state of software is a coordinate in the state space that contains exactly
one value for every internal data structure.

The state space is the cross-product of every internal variable. This is an
astronomically large number of different internal states that govern
whether the software produces the right or wrong response to an input.

The math is not encouraging. In theory, we must apply every atomic
input (which we’ve established is a very large number) for every state of
the application (which is an even larger number). This isn’t even possible
for small applications, much less medium to large ones. If we enumerated
this as a state machine where inputs cause a transition from one state to the
next, we’d require a forest of paper to draw it.

For the hypothetical shopping example, we’d have to ensure that we
can perform the “checkout” input for every possible combination of shop-
ping cart entries. Clearly, we can treat many cart combinations as function-
ally equivalent,4 and we can focus on boundary cases such as an empty cart,
without having to test every single instance of a shopping cart. We discuss
such strategies for doing so in later chapters.

How to Test Software State
Software state comes about through the application’s interaction with its
environment and its history of receiving inputs. As inputs are applied and
stored internally, the software’s state changes. It’s these changes we want to
test. Is the software updating its state properly? Does the state of the appli-
cation cause some inputs to exhibit faulty behavior? Is the software getting
into states it should never be in? The following are the major considerations
for testing input and state interactions.

The input domain for software is infinite, as discussed in the previous
section. We cited input variables, input combinations, and input sequences
for this particular difficulty. However, the added dimension of state also has
the effect of complicating a tester’s life even further. Software state comes
about because of its ability to “remember” prior inputs and accumulate
software state. State can be thought of as encapsulating the input history in
that it is the way that software remembers what users did in previous occa-
sions in which they used the software.

Because software state comes about through the successive application
of input, testing it requires multiple test cases and successively executing,
terminating, and re-executing the software. Software states are visible to
testers if we take the time to notice how our input affects the system. If we
enter some inputs and later see the values we entered, those inputs are
stored internally and have become part of the state of the application. If the

Exploratory Testing in the Small 33

4 We’re back to the concept of equivalence classes again. If they really are an illusion, software
testers are in some very serious trouble.

www.it-ebooks.info

http://www.it-ebooks.info/

software uses the inputs in some calculation and that calculation can be
repeated, the inputs must be stored internally, too.

Software state is another way of describing the sum total of prior inputs
and outputs that the software “remembers.” State is either temporary, in that
it is remembered only during a single execution of the app and forgotten
when the application is terminated, or persistent, in that it is stored in a
database or file and accessible to the application in subsequent executions.
This is often referred to as the scope of data, and testing that the scope is cor-
rectly implemented is an important test.5

Much of the data that is stored either temporarily or persistently cannot
be seen directly and must be inferred based on its influence on software
behavior. If the same input causes two completely different behaviors, the
state of the application must have been different in the two cases. For exam-
ple, imagine the software that controls a telephone switch. The input
“answer the phone” (the act of picking up the receiver on a land line or
pressing the answer button on a cell phone) can produce completely differ-
ent behaviors depending on the state of the software:

• If the phone isn’t registered to a network, there is no response or an
error response.

• If the phone is not ringing, a dial tone is generated (in the case of a land
line) or a redial list is presented (in the case of a cell phone).

• If the phone is ringing, a voice connection to the caller is made.

Here the state is the status of the network (registered or unregistered)
and the status of the phone (ringing or idle). These values combined with
the input we apply (answering the phone) determine what response or out-
put is generated. Testers should attempt to enumerate and test as many
combinations as are reasonable given their time and budget restraints and
based on expectations of risk to the end user.

The relationship between input and state is crucial and a difficult aspect
of testing, both in the small and in the large. Because the former is the sub-
ject of this chapter, consider the following advice:

• Use state information to help find related inputs.

It is common practice to test input combinations. If two or more inputs
are related in some manner, they should be tested together. If we are
testing a website that accepts coupon codes that shouldn’t be combined
with sale prices, we need to apply inputs that create a shopping cart
with sale items and also enter a coupon code for that order. If we only
test the coupon code on shopping carts without sale items, this behav-
ior goes untested, and the owners of the site may end up losing money.
We must observe the effects on the state (the shopping cart items and
their price) as we test to notice this behavior and determine whether

34 Exploratory Software Testing

5 Getting the scope of data wrong has security implications. Imagine entering an input that
represents a credit card number, which is supposed to be scoped only for single use. We must
re-execute the application to test that the number is not incorrectly scoped as a persistent piece
of state.

www.it-ebooks.info

http://www.it-ebooks.info/

developers got it right. Once we determine that we have a group of
related inputs and state data (in this example, sale items, coupon codes,
and the shopping cart), we can methodically work through combina-
tions of them to ensure we cover the important interactions and
behaviors.

• Use state information to identify interesting input sequences.

When an input updates state information, successive applications of
that same input cause a series of updates to state. If the state is accumu-
lating in some way, we have to worry about overflow. Can too many
values be stored? Can a numeric value grow too large? Can a shopping
cart become too full? Can a list of items grow too large? Try to spot
accumulating state in the application you are testing, and repeatedly
apply any and all inputs that impact that accumulation.

Code Paths
As inputs are applied and state is accumulated in the application under
test, the application itself is executing line after line of code as its program-
ming dictates. A sequence of code statements makes a path through the
software. Informally, a code path is a sequence of code statements beginning
with invocation of the software and ending with a specific statement often
representing termination of the software.

There is a substantial amount of possible variation in code paths. Each
simple branching structure (for example, the IF/THEN/ELSE statement)
causes two possible branches, requiring that testers create tests to execute
the THEN clause and separately the ELSE clause. Multibranch structures
(for example, CASE or SELECT statements) create three or more possible
branches. Because branching structures can be nested one inside the other
and sequenced so that one can follow another, the actual number of paths
can be very large for complex code.

Testers must be aware of such branching opportunities and understand
which inputs cause the software to go down one branch as opposed to
another. It isn’t easy to do, particularly without access to the source code or
to tools that map inputs to code coverage. And the paths that are missed
may very well be those with bugs.

Branches are only one type of structure that increase the number of
code paths. Loops make them truly infinite. Unbounded loops execute until
the loop condition evaluates to false. Often, this loop condition itself is
based on user input. For example, users determine when to stop adding
items to their shopping cart before they proceed to checkout: They’ve left
the shopping loop and continue on to the checkout code.

Exploratory Testing in the Small 35

www.it-ebooks.info

http://www.it-ebooks.info/

There are a number of specific strategies for gaining coverage of code
paths that are explored throughout this book.

User Data
Whenever software is expected to interact with large data stores, such

as a database or complex set of user files, testers have the unenviable task of
trying to replicate those data stores in the test lab. The problem is simple
enough to state: Create data stores with specific data as similar as possible
to the type of data we expect our users to have. However, actually achiev-
ing this is devilishly difficult.

In the first place, real user databases evolve over months and years as
data is added and modified, and they can grow very large. Testers are
restricted by a testing phase that may only last a few days or weeks, and so
populating it with data must happen on much shorter time scales.

In the second place, real user data often contains relationships and
structure that testers have no knowledge of and no simple way of inferring.
It is often this complexity that causes the software that worked fine in the
test lab to break when it has to deal with real user data.

In the third place, there is the problem of access to storage space. Large
data stores often require expensive data centers that are simply not accessi-
ble to testers because of the sheer cost involved. Whatever testers do has to
be done in a short period of time and on much smaller byte-scales than
what will happen in the field after release.

An astute tester may observe that a simple solution for all this complex-
ity would be to use an actual user database, perhaps by arranging a mutu-
ally beneficial relationship with a specific beta customer and testing the
application while it is connected to their real data source. However, testers
must use real data with great care. Imagine an application that adds and
removes records from a database. Tests (particularly automated ones) that
remove records would be problematic for the owners of the database.
Testers must now do extra work to restore the database to its original form
or work on some expendable copy of it.

Finally, another complication (as though we hadn’t enough complica-
tions already) surfaces to cause us angst when we deal with real customer
data: privacy.

Customer databases often contain information that is sensitive in some
way or even contains PII (personally identifiable information). In an age of
online fraud and identity theft, this is a serious matter that you do not want
to expose to your test team. Any use of real customer data must provide for
careful handling of PII.

This makes both having and lacking real customer data problematic!

36 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

Environment
Even if it were possible to test every code path with every user input, state
combination, and user data, software could still fail the moment it is
installed in an environment it has never seen before. This is because the
environment itself is an input source, and therefore testers need to ensure
they test as many potential user environments as practical before release.

What’s in an environment? Well, it’s different depending on what type
of an application you are testing. In general, it is the operating system and
how it is configured; it is the various applications that coexist on that oper-
ating system that might interact with the application under test; it is any
other driver, program, file, or setting that may directly or indirectly affect
the application and how it reacts to input. It’s also the network that the
application is connected to, and it’s available bandwidth, performance, and
so forth. Anything that can affect the behavior of the application under test
is part of the environment we must consider during testing.

Unlike user data, which is passive in its effect on software (data sits and
waits for the software under test to manipulate it), the environment is
actively interacting with our software programmatically. It provides input
to our software and consumes its output. The environment consists of not
only resources like the Windows Registry but also applications that are
installed that interact with shared components. The sheer number of such
variations is beyond our reach to re-create. Where are we going to get all
the machines to re-create all those customer environments on? And if we
had the hardware, how would we select the right subset of environments to
include in our testing? We can’t test them all, but any tester who has been
around has experienced a test case that runs fine on one machine and
causes a failure on another. The environment is crucial, and it is devilishly
difficult to test.6

Conclusion
Software testing is complicated by an overload of variation possibilities
from inputs and code paths to state, stored data, and the operational envi-
ronment. Indeed, whether one chooses to address this variation in advance
of any testing by writing test plans or by an exploratory approach that
allows planning and testing to be interleaved, it is an impossible task.
No matter how you ultimately do testing, it’s simply too complex to do it
completely.

However, exploratory techniques have the advantage that they encour-
age testers to plan as they test and to use information gathered during test-
ing to affect the actual way testing is performed. This is a key advantage
over plan-first methods. Imagine trying to predict the winner of the Super

Exploratory Testing in the Small 37

6 Environment variation and testing is not covered in this book. However, Chapters 4 and 5 as
well as Appendixes A and B of How to Break Software treat this topic at length.

www.it-ebooks.info

http://www.it-ebooks.info/

Bowl or Premier League before the season begins. This is difficult to do
before you see how the teams are playing, how they are handling the com-
petition, and whether key players can avoid injury. The information that
comes in as the season unfolds holds the key to predicting the outcome
with any amount of accuracy. The same is true of software testing, and
exploratory testing embraces this by attempting to plan, test, and replan in
small ongoing increments guided by full knowledge of all past and current
information about how the software is performing and the clues it yields
during testing.

Testing is complex, but effective use of exploratory techniques can help
tame that complexity and contribute to the production of high-quality
software.

Exercises
1. Suppose an application takes a single integer as input. What is the

range of possible atomic inputs when the integer is a 2-byte signed inte-
ger? What if it is a 2-byte unsigned integer? What about a 4-byte inte-
ger?

2. As in question 1, suppose an application takes a single integer as input.
Can you get by with just entering the integer 148 and assuming that if
the software works when 148 is entered it will work when any integer
is entered? If you answer yes, explain why. If you answer no, specify at
least two conditions that will cause the software to behave differently if
given 148 or another valid integer.

3. For question 2, what other values might you enter besides integers?
Why would you want to do this?

4. Describe a case in which the combination of inputs can cause software to
fail. In other words, each input taken on its own does not expose a fail-
ure, but when the inputs are combined, the software fails.

5. Imagine a web application that requests shipping information from a
customer, including name, address, and several other fields. Most often,
the information is entered in bulk, and then the information is checked
only after the user clicks a Next or Submit button. Is this an example of
an input check or an exception handler? Justify your answer.

6. Describe a case in which the order of inputs can cause software to fail. In
other words, if you apply the sequence of inputs in one order and the
software works, changing the order in which the inputs are applied
might cause the software to fail.

7. Suppose you have a situation where software fails after it has been left
running continuously for a long period of time. Would you ascribe this
failure to input, state, code paths, environment, or data? Explain your
reasoning.

38 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4
Exploratory Testing in the Large

“A good traveler has no fixed plans and is not intent on arriving.”
—Lao Tzu

Exploring Software
The techniques presented in the preceding chapter help software testers
make the numerous small decisions on-the-fly while they are running test
cases. Those techniques are good for choosing among atomic inputs and
arranging atomic inputs in combination or in sequence. This chapter is
about the larger decisions testers must make concerning feature interaction,
data flows, and choosing paths through the UI that result in making the
application do real work. Instead of decisions regarding atomic inputs that
serve some immediate purpose on a single input panel, we’ll reason about
inputs to guide us toward some larger goal. An exploratory tester will
establish such goals in advance of actual testing and let the goal guide her
during testing sessions. We accomplish this with a tourism metaphor that
treats exploration of software using the tools of a conventional tourist:
organized tours, guidebooks, maps, and local information. This helps us set
goals that can then guide our decision making during testing.

In How to Break Software and its series companions,1 I used a military
metaphor to describe software testing. Given that those books were aimed
exclusively at breaking software, it was a metaphor that helped get the
attack-minded test strategies of those books into the heads of readers. I’ve
received overwhelmingly positive feedback from my readers that they
found the metaphor helpful (and fun!), and so I am encouraged to use the
same approach, with a different metaphor, for this book whose purpose is
much broader.

1 Whittaker, How to Break Software (Addison-Wesley, 2003); Whittaker and Thompson, How to
Break Software Security (Addison-Wesley, 2004); Andrews and Whittaker, How to Break Web
Software (Addison-Wesley, 2006).

www.it-ebooks.info

http://www.it-ebooks.info/

Metaphors can be a powerful guide for software testers.2 This is the
exact purpose we want to achieve: a metaphor that will act as a guide to
help testers choose the right input, data, states, code paths, and environ-
ment settings to get the most out of their testing time and budget.

Testers must make many decisions while they are testing. There are big
decisions, like how to obtain realistic data to simulate customer databases.
There are small decisions, like choosing what string of characters to enter in
a text box. Without the proper mindset and guidance, testers can end up
wandering aimlessly around an application’s interface looking for bugs that
may or may not actually be there and gaining only poor coverage of the
application in the process.

I often tell testers I work with that if it feels like you are on a ghost hunt
during a testing session, you probably are.3 If you feel like you are wander-
ing around looking for shadows, stop testing and try to establish some bet-
ter guiding goals for your effort.

This is where the metaphor can help by providing a strategy and a set
of specific goals for software testers to follow, or at least keep in the back of
their mind, as they are exploring an application. For an explorer, having a
goal to pursue is better than just wandering around. A guiding metaphor
should give testers a goal and then help them understand how to perform
testing that fulfills that goal. If a metaphor yields goals that help testers
make both big and small decisions, then a testers aren’t just wandering aim-
lessly. The metaphor has helped them organize their testing to approach
software’s complexity and its broad range of features in a more methodical
way. This chapter is about using a metaphor, specifically a tourism
metaphor, to make large test decisions that will guide overall exploratory
strategy and feature usage.

In finding a metaphor that works for exploratory testing, it is important
to understand the spirit and intent of exploratory testing so that we ensure
the metaphor is helpful. The goals of exploratory testing are as follows:

40 Exploratory Software Testing

2 However, the wrong metaphor can be distracting. It’s an interesting piece of testing history
that provides a case in point. The technique of estimating the number of fish present in a lake
was used as a metaphor leading to the concept of fault seeding in the late 1980s and early
1990s. The idea was that to estimate the number of fish in a lake, one could stock a fixed
number of a specific type of fish. After a bit of fishing (testing) where some number of real
fish and some number of seeded fish are caught, one can estimate the number of real fish
using the ratio of seeded fish caught to the total number of seeded fish. The fact that this
technique has been relegated to the dusty libraries of testing past is enough proof that the
metaphor was less than useful.

3 Ghost-hunting television shows are popular in the U.S. Teams of paranormal experts (is such
a thing possible?) search old buildings and graveyards for what they deem as evidence of the
supernatural. My kids like the shows, and I often watch them in their company. The ghost
stories are great, but the experts never confirm paranormal presence. They never rule it out
either. This may work for entertainment, but it is not much use for testing. If you can neither
confirm nor deny the presence of a bug in your software (or whether it is working as speci-
fied), you aren’t doing a very good job testing. Perhaps, instead, you should start a television
show about the process instead.

www.it-ebooks.info

http://www.it-ebooks.info/

Exploratory Testing in the Large 41

• To gain an understanding of how an application works, what its
interface looks like, and what functionality it implements: Such a
goal is often adopted by testers new to a project or those who want to
identify test entry points, identify specific testing challenges, and write
test plans. This is also the goal used by experienced testers as they
explore an application to understand the depth of its testing needs and
to find new unexplored functionality.

• To force the software to exhibit its capabilities: The idea is to make the
software work hard and to ask it hard questions that put it through its
paces. This may or may not find bugs, but it will certainly provide evi-
dence that the software performs the function for which it was
designed and that it satisfies its requirements.

• To find bugs: Exploring the edges of the application and hitting poten-
tial soft spots is a specialty of exploratory testing. The goal is purpose-
ful, rather than aimless, exploration to identify untested and historically
buggy functionality. Exploratory testers should not simply stumble
across bugs, they should zero in on them with purpose and intent.

Even as real explorers seldom go about their tasks without some plan-
ning and a lot of strategy, exploratory testers are smart to do the same to
maximize the potential that they look in places where functionality is com-
plex, users are likely to tread, and bugs are more likely to exist. This is a
broader mission that subsumes just breaking software, and it deserves a
new metaphor. The one I think works best is that of a tourist trying to
explore a new destination. I like to call this the “touring test” in honor of
Alan Turing, who proposed the original Turing test.

The Tourist Metaphor
Suppose you are visiting a large city like London, England, for the very first
time. It’s a big, busy, confusing place for new tourists, with lots of things to
see and do. Indeed, even the richest, most time-unconstrained tourist
would have a hard time seeing everything a city like London has to offer.
The same can be said of well-equipped testers trying to explore complex
software; all the funding in the world won’t guarantee completeness.

How does a savvy tourist decide whether car, underground, bus, or
walking is the right method of getting around London? How can you see as
much of the city as possible in the time allocated? How can you cover the
most activities with the shortest commute between them? How can you
make sure you see all the best landmarks and attractions? What if some-
thing goes wrong, who do you go to for help? Should you hire a guide or
figure things out for yourself?

Such tours require some strategy and a lot of goal setting. Goals will
affect how tourists plans their time and will determine what parts of the
city they will see. A flight crew on an overnight layover will approach their

www.it-ebooks.info

http://www.it-ebooks.info/

tour much differently than the organizer of a troupe of visiting students.
The purpose and goals of the tourist will weigh heavily in the actual tour-
ing strategy selected.

On my first trip to London, I was alone on a business trip and chose to
simply walk the streets as my exploration strategy. I didn’t bother with
guidebooks, tours, or any other guidance beyond a vague notion of trying
to find cool things. As it turns out, cool things are hard to avoid in London.
But despite walking all day, I missed many major landmarks completely.
Because I wasn’t sure where anything was, I often saw things without
appreciating them for what they were. That “awesome church” was actu-
ally Saint Paul’s Cathedral, and its significance and history went unrecog-
nized and unappreciated. When I tired of walking and resorted to the
underground, I lost track of distances and haphazardly surfaced from the
subway without really understanding where I was, where I had been, and
how little ground I had actually covered. I felt like I had seen a lot but in
reality barely scratched the surface. From a testing point of view, having
such a false sense of coverage is dangerous.

My London tourist experience is a fairly common description of a lot of
manual and automated testing4 I see on a regular basis. I was a freestyle
tourist, and had I not been lucky enough to return to London on many
future occasions and explore it more methodically, I would have really
missed out. As testers, we don’t often get a chance to return at a later date.
Our first “visit” is likely to be our only chance to really dig in and explore
our application. We can’t afford to wander around aimlessly and take the
chance that we miss important functionality and major bugs. We have to
make our visit count!

My second trip to London was with my wife. She likes structure, so she
bought a guidebook, filled her (actually, my) pockets with tourist
brochures, booked the Big Red Bus Tour, and paid for various walking tours
guided by local experts. In between these guided tours, we used my
method of wandering aimlessly. There is no question that the tours took us
to more interesting places in much less time than my wandering. However,
there was synergy between the two methods. Her tours often uncovered
interesting side streets and alleys that needed additional investigation that
my freestyle methods were perfectly suited as follow up, whereas my wan-
dering often found cool places that we then identified guided tours to
explore more thoroughly. The structure of the guided tour blended seam-
lessly with the freestyle wandering technique.

Tourism benefits from a mix of structure and freedom, and so does
exploratory testing. There are many touring metaphors that will help us

42 Exploratory Software Testing

4 There is no fundamental difference in designing automated tests and designing manual tests.
Both require similar design principles with the primary difference being how they are exe-
cuted. Poor test design principles will ruin both manual and automated tests with automated
tests simply doing nothing faster. Indeed, I maintain that all good automated tests began
their lives as manual tests.

www.it-ebooks.info

http://www.it-ebooks.info/

add structure to our exploration and get us through our applications faster
and more thoroughly than freestyle testing alone. In this chapter, we dis-
cuss these tours. In later chapters, we actually use the tours as part of a
larger exploratory testing strategy. Many of these tours fit into a larger test-
ing strategy and can even be combined with traditional scenario-based test-
ing that will determine exactly how the tour is organized. But for now, all
the tours are described in this chapter to “get them inside your head” and
as a reference for later when we employ them more strategically.

“Touring” Tests
Any discussion of test planning needs to begin with decomposition of the
software into smaller pieces that are more manageable. This is where con-
cepts such as feature testing come into play, where testing effort is distrib-
uted among the features that make up the application under test. This
simplifies tracking testing progress and assigning test resources, but it also
introduces a great deal of risk.

Features are rarely independent from each other. They often share
application resources, process common inputs, and operate on the same
internal data structures. Therefore, testing features independently may pre-
clude finding bugs that surface only when features interact with each other.

Fortunately, the tourist metaphor insists on no such decomposition.
Instead, it suggests a decomposition based on intent rather than on any
inherent structure of the application under test. Like a tourist who
approaches her vacation with the intent to see as much as possible in as
short a period of time as possible, so the tester will also organize her tours.
An actual tourist will select a mix of landmarks to see and sites to visit, and
a tester will also choose to mix and match features of the software with the
intent to do something specific. This intent often requires any number of appli-
cation features and functions to be combined in ways that they would not
be if we operated under a strict feature testing model.

Tourist guidebooks will often segment a destination into districts.
There’s the business district, the entertainment district, the theater district,
the red light district, and so forth. For actual tourists, such segments often
represent physical boundaries. For the software tester, they are strictly logi-
cal separations of an application’s features, because distance is no real issue
for the software tester. Instead, software testers should explore paths of the
application that run through many features in various orders. Thus, we
present a different take on the tourist guidebook.

We separate software functionality into overlapping “districts” for con-
venience and organization. These are the business district, the historical dis-
trict, the tourist district, the entertainment district, the hotel district, and the
seedy district. Each district and their associated tours are summarized here,

Exploratory Testing in the Large 43

www.it-ebooks.info

http://www.it-ebooks.info/

and then tours through those districts are described in the sections that
follow:

• Business district: In a city, the business district is bounded by the
morning rush hour and evening commute and contains the productive
business hours and after-work socials. In the business district, there are
the banks, office buildings, cafes, and shops. For software, the business
district is also “where the business gets done” and is bounded by
startup and shutdown code and contains the features and functions for
which customers use the software. These are the “back of the box” fea-
tures that would appear in a marketing commercial or sales demo and
the code that supports those features.

• Historical district: Many cities have historic places or were the setting
for historic events. Tourists love the mystery and legacy of the past and
that makes historical districts very popular. For software, history is
determined by its legacy code and history of buggy functions and fea-
tures. Like real history, legacy code is often poorly understood, and
many assumptions are made when legacy code is included, modified,
or used. Tours through this district are aimed at testing legacy code.

• Tourist district: Many cities have districts where only tourists go.
Locals and those who live in the city avoid these congested thorough-
fares. Software is similar in that novice users will be attracted to fea-
tures and functions that an experienced user has no more use for.

• Entertainment district: When all the sites and historical places have
been exhausted by a tourist (or have exhausted the tourist!), some
mindless relaxation and entertainment is often needed to fill out the
corners of a good vacation. Software, too, has such supportive features,
and tours to test these features are associated with this district. These
tours complement the tours through other districts and fill out the cor-
ners of a good test plan.

• Hotel district: Having a place for tourists to rest at night, recover from
their busy day, or wait out lousy weather is a must for any destination
city. As we shall see, software is actually quite busy when it is “at rest,”
and these tours seek to test those features.

• Seedy district: Seedy districts are those unsavory places that few guide-
books or visitors bureaus will document. They are full of people doing
bad and illegal things and are better off left alone. Yet they attract a cer-
tain class of tourist anyway. Seedy tours are a must for testers because
they find places of vulnerability that may be very unsavory to users
should they remain in the product.

44 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

Tours of the Business District
Business districts for cities bustle during the morning and afternoon rush
and over the lunch hour. They are also where work gets done. They contain
banks, office buildings, and usually aren’t interesting places for tourists to
hang out.

This is not the case for the software tourist. The parts of the application
that “get the business done” are the reasons that people buy and use soft-
ware. They are the features that appear in marketing literature, and if you
polled customers about why they use your software, these are the features
they would quote.

Business District tours focus on these important features and guide
testers through the paths of the software where these features are used.

The Guidebook Tour
Guidebooks for tourists often boil down the sights to see to a select (and
manageable) few. They identify the best hotels, the best bargains, and the
top attractions, without going into too much detail or overwhelming a
tourist with too many options. The attractions in the guidebook have been
visited by experts who tell the tourist exactly how to enjoy them and get the
most out of a visit.

It is sheer speculation on my part, but I would imagine many tourists
never wander beyond the confines created by the authors of these guide-
books. Cities must ensure that such attraction areas are clean, safe, and wel-
coming so that tourists will spend their money and return often. From a
testing standpoint, hitting such hotspots is just as important, and that
makes this tour a crucial part of every testing strategy. Like cities, we want
users to enjoy their experience, and so the major features need to be usable,
reliable, and work as advertised.

The analogous artifact for exploratory testing is the user manual,
whether it is printed or implemented as online help (in which case, I often
call this the F1 tour to denote the shortcut to most help systems). For this
tour, we will follow the user manual’s advice just like the wary traveler, by
never deviating from its lead.

The guidebook tour is performed by reading the user manual and fol-
lowing its advice to the letter. When the manual describes features and how
they are used, the tester heeds those directives. The goal is to try and exe-
cute each scenario described in the user manual as faithfully as possible.
Many help systems describe features as opposed to scenarios, but almost all
of them give very specific advice about which inputs to apply and how to
navigate the user interface to execute the feature. Thus this tour tests not
only the software’s ability to deliver the functionality as described but also
the accuracy of the user manual.

Variations of this tour would be the Blogger’s tour, in which you follow
third-party advice, and the Pundit’s tour, where you create test cases that
describe the complaints of unhappy reviewers. You’ll find these sources of

Exploratory Testing in the Large 45

www.it-ebooks.info

http://www.it-ebooks.info/

information in online forums, beta communities, user group newsletters, or
if your application is big and widely distributed like Microsoft Office, on
bookstore shelves. Another useful variant is the Competitor’s tour, where you
follow any of the above artifacts’ advice for competing systems.5

The guidebook and its variants test the software’s ability to deliver its
advertised functionality. It’s a straightforward test, and you should be alert
for deviations from the manual and report those as bugs. It may end up that
the fix is to update the manual, but in any event you have done a service for
your users. The guidebook tour forces you to string together features of the
software much the same way as a user would string them together and
forces those features to interact. Any bugs found during this tour tend to be
important ones.

In Chapter 6, “Exploratory Testing in Practice,” several examples of the
Guidebook tour are given.

The Money Tour
Every location that covets tourists must have some good reasons for them
to come. For Las Vegas, it’s the casinos and the strip, for Amsterdam it’s the
coffee shops and red light district, for Egypt it’s the pyramids. Take these
landmarks away and the place is no longer an attraction, and tourists will
take their money elsewhere.

Software is much the same: There has to be some reason for users to
buy it. If you identify the features that draw users, that’s where the money
is. For exploratory testers finding the money features means following the
money, literally. And money usually leads directly to the sales force.

Sales folk spend a great deal of time giving demos of applications. One
might imagine that because they get paid based on fulfilling their sales
quota, they would be very good at it and would include any interesting
nuances of usage that make the product look its very best. They also excel
at shortcuts to smooth out the demo and often come up with scenarios that
sell the product but weren’t part of any specific requirements or user story.
The long and short of it is that salespeople are a fantastic source of informa-
tion for the Money tour.

Testers performing the Money tour should sit in on sales demos, watch
sales videos, and accompany salespeople on trips to talk to customers. To
execute the tour, simply run through the demos yourself and look for prob-
lems. As the product code is modified for bug fixes and new features, it
may be that the demo breaks and you’ve not only found a great bug, but
you’ve saved your sales force from some pretty serious embarrassment

46 Exploratory Software Testing

5 Testing your own application using the “guidebook” for a competing system is a novel
approach to this tour. It works out very well in situations where the competing product is a
market leader and you are trying to supplant it with your own. In these cases, the users who
migrate to your application may well be used to working in the manner described in those
sources, and therefore, you’ll explore your application much the same way as (hopefully) lots
of transitioning users. Better that such a tour happen with you as the tourist than to let your
users discover whether your software meets their needs all on their own.

www.it-ebooks.info

http://www.it-ebooks.info/

(perhaps even salvaging a sale). I have found enough bugs this way to pri-
vately wonder whether there is a case to be made for testers sharing in sales
commissions!

A powerful variation of this tour is the Skeptical Customer tour, in which
you execute the Money tour but pretend there is a customer constantly
stopping the demo and asking “what if?” “What if I wanted to do this?”
they may ask, or, “How would I do that?” requiring you to go off script and
include a new feature into the demo. This happens a lot in customer demos,
especially the serious ones where a purchase is imminent and the customer
is kicking the tires one last time. It’s a powerful way to create test cases that
will matter to end users.

Once again, sitting in on customer demos by the sales force and having
a good relationship with individual salespeople will give you a distinct
advantage when you use this tour and will allow you to maximize the effect
of this variation.

Clearly, any bugs you find on this tour are very important ones as they
are likely to be seen by real customers.

In Chapter 6, several examples of the Money tour are given.

The Landmark Tour
As a boy growing up in the fields, meadows, and woods of Kentucky, I
learned to use a compass by watching my older brother, who seemed to
spend more time in the woods than he did anywhere else. He taught me
how to orient myself by using the compass to pinpoint landmarks that were
in the general direction we wanted to go. The process was simple. Use the
compass to locate a landmark (a tree, rock, cliff face, and so forth) in the
direction you want to go, make your way to that landmark, and then locate
the next landmark, and so on and so forth. As long as the landmarks were
all in the same direction, you could get yourself through a patch of dense
Kentucky woods.6

The Landmark tour for exploratory testers is similar in that we will
choose landmarks and perform the same landmark hopping through the
software that we would through a forest. At Microsoft, we chose our land-
marks in advance by selecting key features identified during the Guidebook
tour and the Money tour. Choose a set of landmarks, decide on an ordering
for them, and then explore the application going from landmark to land-
mark until you’ve visited all of them in your list. Keep track of which land-
marks you’ve used and create a landmark coverage map to track your
progress.

Testers can create a great deal of variation in this tour by choosing first
a few landmarks and executing the tour, and then increasing the number of
landmarks and varying the order in which you visit them.

Exploratory Testing in the Large 47

6 We once found a moonshine still this way, but that’s one of the hazards of exploring rural
Kentucky. Bugs will surface at a much faster rate than stills!

www.it-ebooks.info

http://www.it-ebooks.info/

In Visual Studio, the first group at Microsoft to use the tours in produc-
tion, this is the most popular and useful tour, followed closely by the
Intellectual tour, which is described next.

The Intellectual Tour
I was once on a walking tour of London in which the guide was a gentle-
man in his fifties who claimed at the outset to have lived in London all his
life. A fellow tourist happened to be a scholar who was knowledgeable in
English history and was constantly asking hard questions of the guide. He
didn’t mean to be a jerk, but he was curious, and that combined with his
knowledge ended up being a dangerous combination…at least to the
guide.

Whenever the guide would talk about some specific location on the
tour, whether it was Oscar Wilde’s former apartment in Chelsea, details of
the great fire, or what life was like when horses were the primary mode of
transportation, the scholar would second guess him or ask him some hard
question that the guide struggled to answer. The poor guide had never
worked so hard on any past tour. Every time he opened his mouth, he knew
he was going to be challenged, and he knew he had to be on his toes. He
wasn’t up to the task and finally admitted that he had only actually lived in
London for five years, and he had memorized the script of the tour. Until he
met the intellectual, his ruse had worked.

What a fantastic bug! The scholar actually managed to break the guide! I
was so impressed I bought both the guide and the intellectual a pint when
the tour ended at a pub (a place, incidentally, where the hapless guide was
infinitely more knowledgeable than the scholar).

When applied to exploratory testing, this tour takes on the approach of
asking the software hard questions. How do we make the software work as
hard as possible? Which features will stretch it to its limits? What inputs
and data will cause it to perform the most processing? Which inputs might
fool its error-checking routines? Which inputs and internal data will stress
its capability to produce any specific output?

Obviously, such questions will vary widely depending on the applica-
tion under test. For folks who test word processors, this tour would direct
them to create the most complicated documents possible, ones full of
graphics, tables, multiple columns, footnotes, and so forth. For folks testing
online purchasing systems, try to invent the hardest order possible. Can we
order 200 items? Can we place multiple items on backorder? Can we keep
changing our mind about the credit card we want to use? Can we make
mistakes on every field in the data entry forms? This tour is going to be dif-
ferent for every application, but the idea is the same: Ask your software
hard questions. Just as the intellectual did with the London guide, you are
likely to find gaps in its logic and capabilities in the exact same manner.

A variation of this tour is the Arrogant American tour that celebrates a
stereotype of my countrymen when we travel abroad. Instead of asking
hard questions, we ask silly questions otherwise intended simply to annoy

48 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

or impede the tour and draw attention to ourselves. We intentionally
present obstacles to see how the software reacts. Instead of the most compli-
cated word processing document, we make the most colorful, invert every
other page, print only prime number pages, or place something in a loca-
tion that makes little sense. On a shopping site, we’ll seek out the most
expensive items only to return them immediately. It doesn’t have to make
sense…we do it because we can. It isn’t unheard of for your users to do the
same.

This tour and its variants will find any number of types of bugs from
high priority to simply stupid. It’s up to the exploratory testers to rein
themselves in. Try to separate the truly outrageous hard questions (like ask-
ing a London guide whether he founded the city on the north side of the
river Thames or the south side; it’s a hard question, but it doesn’t have
much purpose) from questions that really make the software work. Try to
create realistically complicated documents, orders, or other data so that it is
easier to argue that bugs you find really matter to the user and should be
fixed.

The Intellectual tour is used in Chapter 6 by Bola Agbonile to test
Windows Media Player.

The FedEx Tour
FedEx is an icon in the package-delivery world. They pick up packages,
move them around their various distribution centers, and send them to
their final destination. For this tour7, instead of packages moving around
the planet through the FedEx system, think of data moving through the
software. The data starts its life as input and gets stored internally in vari-
ables and data structures where it is often manipulated, modified, and used
in computation. Finally, much of this data is finally “delivered” as output to
some user or destination.

During this tour, a tester must concentrate on this data. Try to identify
inputs that are stored and “follow” them around the software. For example,
when an address is entered into a shopping site, where does it gets dis-
played? What features consume it? If it is used as a billing address, make
sure you exercise that feature. If it is used as a shipping address, make sure
you use that feature. If can be updated, update it. Does it ever get printed or
purged or processed? Try to find every feature that touches the data so that,
just as FedEx handles their packages, you are involved in every stage of the
data’s life cycle.

David Gorena Elizondo applies the FedEx tour to Visual Studio in
Chapter 6.

The After-Hours Tour
Even business has to stop at some point for workers to commute to their
homes or head for the after-hours gathering spots. This is a crowded time

Exploratory Testing in the Large 49

7 This tour was first proposed by Tracy Monteith of Microsoft.

www.it-ebooks.info

http://www.it-ebooks.info/

for cities, and many tourists choose to stay away from the business districts
after hours.

But not the software tester! After hours, when the money features are
no longer needed, many software applications remain at work. They per-
form maintenance tasks, archive data, and back up files. Sometimes appli-
cations do these things automatically, and sometimes a tester can force
them. This is the tour that reminds us to do so.

A variation of this tour is the Morning-Commute tour, whose purpose
it is to test startup procedures and scripts. Had this tour been applied on
the Zune, we may well have avoided the infinite loop that bricked first-
generation Zune devices on December 31, 2008.

50 Exploratory Software Testing

The After-Hours Zune Bug
December 31 was the 366th day in the leap year of 2008. On that day,
Microsoft’s first-generation Zune froze and never recovered. The bug was
an off-by-one error in a loop that only handled a year with 365 days. The
result is that the loop never ended and the Zune froze, which is exactly
what an infinite loop will cause software to do. The code looks like this:

year = ORIGINYEAR; /* = 1980 */
while (days > 365)
{

if (IsLeapYear(year))
{

if (days > 366)
{

days -= 366;
year += 1;

}
}
else
{

days -= 365;
year += 1;

}
}

This code takes the clock information and computes the year and counts
down from either 365 or 366 until it can determine the month and day. The
problem is that 366 is too large a number to ever break out of the while
loop (meaning that the loop never ends and the Zune goes off into never-
never land). Because this script is in the startup code, once you turn the
Zune on, it is caput. The solution requires that you need a new clock value
on January 1 in order to reset the device: Therefore, the fix is to wait until
the new year and pull the battery!

www.it-ebooks.info

http://www.it-ebooks.info/

The Garbage Collector’s Tour
Those who collect curbside garbage often know neighborhoods better than
even residents and police because they go street by street, house by house,
and become familiar with every bump in the road. They crisscross neigh-
borhoods in a methodical manner, stopping at each house for a few
moments before moving on. However, because they are in a hurry, they
don’t stay in one place very long.

For software, this is like a methodical spot check. We can decide to spot
check the interface where we go screen by screen, dialog by dialog (favor-
ing, like the garbage collector, the shortest route), and not stopping to test in
detail, but checking the obvious things (perhaps like the Supermodel tour).
We could also use this tour to go feature by feature, module by module, or
any other landmark that makes sense for our specific application.

The Garbage Collector’s tour is performed by choosing a goal (for exam-
ple, all menu items, all error messages, all dialog boxes), and then visiting
each one in the list by the shortest path possible. In Chapter 6, Bola
Agbonile applies this tour to Windows Media Player, and Geoff Staneff
applies it to Visual Studio.

Tours Through the Historical District
Historical districts within cities are areas that contain old buildings and
places of historical note. In cities like Boston, they are distributed around
the city and connected by marked walking trails. In Cologne, Germany, a
small contiguous section of the city is called the “old town” to mark where
the city stood before its modern expansion.

In software, historical district can be as loosely connected as in Boston
or as contained as they are in Cologne. The historical district represents
areas of legacy code, features that debuted in earlier versions, and bug fixes.
The latter is particularly important because when it comes to bugs, history
does indeed repeat itself, and it is important to retest previously buggy sec-
tions of code. Tours through the historical district are designed to test
legacy functionality and verify bug fixes.

The Bad-Neighborhood Tour
Every city worth visiting has bad neighborhoods and areas that a tourist is
well advised to avoid. Software also has bad neighborhoods—those sec-
tions of the code populated by bugs. The difference between real tourists
and exploratory testers, however, is that the former try to avoid bad neigh-
borhoods, and the latter are well advised to spend as much time in them as
possible.

Clearly, we do not know in advance which features are likely to repre-
sent bad neighborhoods. But as bugs are found and reported, we can
connect certain features with bug counts and can track where bugs are

Exploratory Testing in the Large 51

www.it-ebooks.info

http://www.it-ebooks.info/

occurring on our product. Because bugs tend to congregate,8 revisiting
buggy sections of the product is a tour worth taking. Indeed, once a buggy
section of code is identified, it is recommended to take a Garbage
Collector’s tour through nearby features to verify that the fixes didn’t intro-
duce any new bugs.

The Museum Tour
Museums that display antiquities are a favorite of tourists. The Smithsonian
and various museums of natural history draw many thousands of visitors
on a daily basis. Antiquities within a code base deserve the same kind of
attention from testers. In this case, software’s antiquities are legacy code.

Untouched legacy code is easy to identify by a quick perusal of the
date/time stamps in the code repository or on project binary and assembly
files. Many source repositories also maintain a modification record, so
testers can do a little research to see what older code may contain some
recent modifications.

Older code files that undergo revision or that are put into a new envi-
ronment tend to be failure prone. With the original developers long gone
and documentation often poor, legacy code is hard to modify, hard to
review, and evades the unit testing net of developers (who usually write
such tests only for new code). During this tour, testers should identify older
code and executable artifacts and ensure they receive a fair share of testing
attention.

The Prior Version Tour
Whenever a product is constructed as an update from a prior version, it is
good to run all the scenarios and test cases that applied to the prior version.
This will validate that functionality that users are used to is still supported
in a useful and usable way in the new product. In the event that the newer
version reimplements or removes some functionality, the tester should
choose the inputs that represent the new way of doing things as defined by
the latest version. Any tours that are no longer possible in the new version
should be scrutinized to ensure that no necessary functionality was lost.

Tours Through the Entertainment District
On every vacation, tourists will need a break from their busy schedule of
fighting crowds and seeing the sites. Visiting the entertainment district, tak-
ing in a show, or having a long quiet dinner out is a common way of doing
this. Entertainment districts aren’t about seeing sites, they fill in the gaps of
a vacation and give a local flavor to relaxation.

52 Exploratory Software Testing

8 Bugs congregate in features for any number of reasons. Because developers tend to be
assigned to a project based on feature ownership, a single feature will have a proportion of
bugs based on the skill of the individual developer. Bugs also congregate around complexity;
so features that are harder to code may end up with more bugs. The idea here is that after a
feature is shown to be buggy, there are very likely more bugs to be found in that feature if
only you keep looking for them.

www.it-ebooks.info

http://www.it-ebooks.info/

Most software has features that serve these purposes. For example, the
business district for a word processor is the set of features to construct the
document, write text, and insert graphics, tables, and artwork. The enter-
tainment district, on the other hand, is the filler features for laying out
pages, formatting text, and modifying backgrounds and templates. In other
words, the work is in making the document and the “fun” part is making it
look nice and represents an intellectual break from the actual work.

Tours through the entertainment district will visit supporting rather
than mainline features and ensure that the two are intertwined in useful
and meaningful ways.

The Supporting Actor Tour
I’m glad I started this chapter using London as my analogy because London
is full of interesting sites and really cool buildings. On one of the many
guided walking tours I’ve taken through nearly all parts of the city, I
couldn’t help but to be more attracted to the buildings that the guide was
not pointing out than the ones he was telling us about. As he described a
famous church that had historical significance, I found myself drawn to a
short row house of buildings with rounded doors barely more than 5 feet
high. It was like the hobbit portion of the city. On another stop, he was
telling the story of pelicans that had been granted tenure in one of the city’s
parks. I found the pelican uninteresting, but a small island in the pond had
a willow tree with a root structure that looked like dragon’s teeth. I was
enthralled.

Whenever salespeople demo a product or marketing touts some feature
of our application, users are liable to be tempted by features nearby those in
the spotlight. The Supporting Actor tour encourages testers to focus on those
features that share the screen with the features we expect most users to
exercise. Simply their proximity to the main event increases their visibility,
and we must not make the mistake of giving those features less attention
than they deserve.

Examples include that little link for similar products that most people
skip in favor of clicking on the product they searched for. If a menu of items
is presented and the second item is the most popular, choose the third. If
the purchasing scenarios are the bread and butter, then select the product
review feature. Wherever the other testers are looking, turn your attention a
few degrees left or right and make sure that the supporting actor gets the
attention it deserves.

In Chapter 6, Nicole Haugen shows how she used the Supporting Actor
tour on the Dynamics AX client software.

The Back Alley Tour
In many peoples’ eye, a good tour is one in which you visit popular places.
The opposite of these tours would be one in which you visited places no
one else was likely to go. A tour of public toilets comes to mind, or a swing
through the industrial section of town. There are also so-called “behind the

Exploratory Testing in the Large 53

www.it-ebooks.info

http://www.it-ebooks.info/

scenes” tours at places like Disney World or film studios where one can see
how things work and go where tourists ordinarily don’t tread. In
exploratory testing terms, these are the least likely features to be used and
the ones that are the least attractive to users.9

If your organization tracks feature usage, this tour will direct you to test
the ones at the bottom of the list. If your organization tracks code coverage,
this tour implores you to find ways to test the code yet to be covered.

An interesting variation on this theme is the Mixed-Destination tour. Try
visiting a combination of the most popular features with the least popular.
You can think of this as the Landmark tour with both large and small land-
marks intermixed. It may just be that you find features that interact in ways
you didn’t expect because developers didn’t anticipate them being mixed
together in a single scenario.

54 Exploratory Software Testing

9 It would be fair to ask whether we should test these features at all, but I feel that it is impor-
tant that we do so. If the feature has made it into the product, it is important to someone some-
where. At companies like Microsoft and Google, the user base is so large that even the
less-popular features can be used millions of times in a single day. In such cases, there really is
no such thing as an unimportant feature. However, it is wise to proportion a testing budget in
accordance with usage frequency as much as it is possible to do so.

Feature Interaction
It’s a frustrating fact of testing life that you can test a feature to death and
not find bugs only to then see it fail when it interacts with another feature.
In reality, one would have to test every feature of an application with every
other feature in pairs, triplets, and so on to determine whether they interact
in ways that will make the software fail. Clearly, such an exhaustive strat-
egy is impossible, and for the most part it is not necessary. Instead, there are
ways to determine if two features need to be tested together.

I like to frame this problem as a series of questions. Simply select two
candidate features and ask yourself the following:

• The input question: Is there an input that gets processed by both
features in question?

• The output question: Do the features operate on the same portion
of the visible UI? Do they generate or update the same output?

• The data question: Do the features operate on shared internal
data? Do they use or modify the same internally stored informa-
tion?

If the answer to any of these questions is “yes,” then the features interact
and need to be tested together.

In Chapter 6, Nicole Haugen, David Gorena Elizondo, and Geoff
Staneff all use the Back Alley tour for a variety of testing tasks.

www.it-ebooks.info

http://www.it-ebooks.info/

The All-Nighter Tour
Also known as the Clubbing tour, this one is for those folks who stay out late
and hit the nightspots. The key here is all night. The tour must never stop;
there is always one more club and one last drink. Such tours, some believe,
are tests of the constitution. Can you last? Can you survive the all-nighter?

For exploratory testers, the question is the same: Can the app last? How
long can it run and process data before it just collapses? This is a real chal-
lenge for software. Because of the buildup of data in memory and the con-
stant reading and writing (and rereading and rewriting) of variable values,
bad things can happen if given time to do so. Memory leaks, data corrup-
tion, race conditions…there are many reasons to give time to your testing.
And because closing and opening an application resets the clock and clears
out memory, the logic behind this tour is to never close the app. This also
extends to using features continuously and keeping files open continuously.

Exploratory testers on the All-Nighter tour will keep their application
running without closing it. They will open files and not close them. Often,
they don’t even bother saving them so as to avoid any potential resetting
effect that might occur at save time. They connect to remote resources and
never disconnect. And while all these resources are in constant use, they
may even run tests using other tours to keep the software working and
moving data around. If they do this long enough, they may find bugs that
other testers will not find because the software is denied that clean reset
that occurs when it is restarted.

Many groups use dedicated machines that never get turned off and run
automation in a loop. It is even more important to do this for mobile
devices that often do stay on for days at a time as a normal course of usage.
Of course, if there are different stages of reset, such as a sleep mode or
hibernation mode, these can be used at varying rates as long as the software
itself retains its state information.

Tours Through the Tourist District
Every city that focuses on tourism has a section of town where tourists con-
gregate. It’s full of souvenir shops, restaurants, and other things to maxi-
mize spending and ensure the profits of the local merchants. There are
collectibles for sale, services to be bought, and pampering to be had.

Tours through the tourist district take several flavors. There are short
trips to buy souvenirs, which are analogous to brief, special-purpose test
cases. There are longer trips to visit a checklist of destinations. These tours
are not about making the software work, they are about visiting its func-
tionality quickly…just to say you’ve been there.

The Collector’s Tour
My parents possess a map of the United States with every state shaded a
different color. Those states all started out white, but as they visited each
state on vacation, that state was then colored in on the map. It was their
goal to visit all 50 states, and they went out of their way to add to their
collection. One might say they were collecting states.

Exploratory Testing in the Large 55

www.it-ebooks.info

http://www.it-ebooks.info/

Sometimes a tour involves freebies that can be collected. Maybe it’s a
wine tasting or a fair with booths for children to work on some craft.
Whatever it may be, there is always someone who wants to do everything,
collect everything. Perhaps it’s the guy who has to take a picture of every
single statue in the museum, a lady who wants her kid to meet every over-
stuffed character at Disney World, or the guy at the supermarket who must
consume every free sample on offer. Well, this is just the kind of greed that
will come in handy to the exploratory tester.

For exploratory testers also collect things and strive for completeness.
The Collector’s tour suggests collecting outputs from the software; and the
more one collects, the better. The idea behind this tour is to go everywhere
you can and document (as my parents did on their state map) all the out-
puts you see. Make sure you see the software generate every output it can
generate. For a word processor, you would make sure it can print, spell
check, format text, and so on. You may create a document with every possi-
ble structure, table, chart, or graphic. For an online shopping site, you need
to see a purchase from every department, credit card transactions that suc-
ceed and ones that fail, and so on and so forth. Every possible outcome
needs to be pursued until you can claim that you have been everywhere,
seen everything, and completed your collection.

This is such a large tour that it is often good to take it as a group activ-
ity. Divvy up the features among members of the group or assign certain
outputs to specific individuals for collection. And when a new version of
the application is ready for testing, one needs to throw away all the outputs
for the features that have changed and restart the collection.

The Collector’s tour is demonstrated by Nicole Haugen in Chapter 6.

The Lonely Businessman Tour
I have a friend (whom I won’t name given the rather derogatory title of this
tour) who travels a great deal on business. He has visited many of the
world’s great cities, but mostly sees the airport, the hotel, and the office. To
remedy this situation, he has adopted the strategy of booking a hotel as far
away from the office he’s visiting as possible. He then walks, bikes, or takes
a taxi to the office, forcing him to see some of the sites and get a flavor of
the city.

Exploratory testers can perform a variety of this tour that can be very
effective. The idea is to visit (and, of course, test) the feature that is furthest
away from the application’s starting point as possible. Which feature takes
the most clicks to get to? Select that one, click your way to it, and test it.
Which feature requires the most screens to be navigated before it does any-
thing useful? Select it and test it. The idea is to travel as far through the
application as possible before reaching your destination. Choose long paths
over short paths. Choose the page that is the buried deepest within the
application as your target.

You may even decide to execute the Garbage Collector’s tour both on
the way to such a destination and once you get where you are going.

56 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

The Supermodel Tour
For this tour, I want you to think superficially. Whatever you do, don’t go
beyond skin deep. This tour is not about function or substance; it’s about
looks and first impressions. Think of this as the cool tour that all the beauti-
ful people take; not because the tour is meaningful or a great learning expe-
rience. On the contrary, you take this tour just to be seen.

Get the idea? During the Supermodel tour, the focus is not on functional-
ity or real interaction. It’s only on the interface. Take the tour and watch the
interface elements. Do they look good? Do they render properly, and is the
performance good? As you make changes, does the GUI refresh properly?
Does it do so correctly or are there unsightly artifacts left on the screen? If
the software is using color in a way to convey some meaning, is this done
consistently? Are the GUI panels internally consistent with buttons and
controls where you would expect them to be? Does the interface violate any
conventions or standards?

Software that passes this test may still be buggy in many other ways,
but just like the supermodel…it is going to look really good standing at
your side.

The Supermodel tour is used extensively in Chapter 6. Along with the
Landmark tour and the Intellectual’s tour, it was used on every pilot project
at Microsoft.

The TOGOF Tour
This tour is a play on the acronym for Buy One Get One Free—BOGOF—
that is popular among shoppers. The term is more common in the United
Kingdom than the United States, but in either case it is not just for groceries
and cheap shoes anymore. The idea isn’t for the exploratory tester to buy
anything, but instead to Test One Get One Free.

The TOGOF tour is a simple tour designed only to test for multiple
copies of the same application running simultaneously. Start the tour by
running your application, then starting another copy, and then another.
Now put them through their paces by using features that cause each appli-
cation to do something in memory and something on the disk. Try using all
the different copies to open the same file or have them all transmit data
over the network simultaneously. Perhaps they will stumble over each
other in some way or do something incorrect when they all try to read from
and write to the same file.

Why is it a TOGOF? Well, if you find a bug in one copy, you’ve found a
bug in all of them! David Gorena Elizondo demonstrates how he applied
this tour to Visual Studio in Chapter 6.

The Scottish Pub Tour
My friend Adam Shostack (the author of The New School of Information
Security) was visiting Amsterdam when he had a chance meeting with a
group of Scottish tourists. (The kilts betrayed their nationality as much as
their accents.) They were members of a pub-crawling troupe with interna-
tional tastes. He joined them on a pub tour of the city that he readily

Exploratory Testing in the Large 57

www.it-ebooks.info

http://www.it-ebooks.info/

concedes consisted of venues he would never have found without their
guidance. The pubs ranged from small, seedy joints to community gather-
ing places buried in neighborhoods more than a little off the beaten path.

How many such places exist in my own town, I wonder? There are
many places that you can find only by word of mouth and meeting the
right guide.

This tour applies specifically to large and complicated applications.
Microsoft Office products fit this category. So do sites such as eBay,
Amazon, and MSDN. There are places in those applications that you have
to know about to find.

This isn’t to say they receive hardly any usage, they are just hard to
find. Adam tells stories of many of the pubs on his Scottish tour fairly heav-
ing with people. The trick is in finding them.

But testers can’t depend on chance meetings at hotels with kilt-wearing
guides. We have to meet the guides where they are. This means finding and
talking to user groups, reading industry blogs, and spending a great deal of
time touring the depths of your application.

Tours Through the Hotel District
The hotel is a place of sanctuary for the tourist. It is a place to get away
from the hustle and bustle of the vacation hotspots for a little rest and relax-
ation. It is also a place for the software tester to get away from the primary
functionality and popular features and test some of the secondary and sup-
porting functions that are often ignored or under-represented in a test plan.

The Rained-Out Tour
Once again, my selection of London as my tourist base pays off because
sometimes even the best tours get rained out. If you’ve taken a pub tour in
London between the autumn and spring months, it can be a wet, rainy
affair, and you may well find yourself tempted to cut the tour short at the
second stop. For the tourist, I do not recommend this tactic. You are already
wet, and that’s just going to ensure that the next pub feels even better than
the last once you manage to actually get there. But for the exploratory
tester, I highly recommend use of that cancel button.

The idea behind the Rained-Out tour is to start operations and stop
them. We may enter information to search for flights on a travel website
only to cancel them after the search begins. We may print a document only
to cancel it before the document is complete. We will do the same thing for
any feature that provides a cancel option or that takes longer than a few
seconds to complete.

Exploratory testers must seek out the time-consuming operations that
their application possesses to use this attack to its fullest. Search capabilities
are the obvious example, and using terms that make for a longer search is a
tactic that will make this tour a little easier. Also, every time a cancel button
appears, click it. If there is no cancel button, try the Esc key or even the back

58 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

button for apps that run in a browser. There’s always Shift-F4 or closing the
X button to close the application completely. And try this, too: Start an
operation, and then start it again without stopping the first.

The failures you will see on this tour are mostly related to the inability
of the application to clean up after itself. There are often files left open, data
left clogging up internal variables, and a state of the system that is no
longer tenable for the software to do much else. So after you hit cancel
(etc.), take some time to poke around the application to make sure it is still
working properly. At the very least, you want to make sure that whatever
action you canceled should be able to be exercised again and complete suc-
cessfully. After all, one would expect a user to occasionally cancel some-
thing and then try again.

The Rained-Out tour is used extensively in Chapter 6.

The Couch Potato Tour
There’s always one person on a group tour who just doesn’t participate. He
stands in the back with his arms folded. He’s bored, unenergetic, and
makes one wonder exactly why he bothered paying for the tour in the first
place. However, on such tours, the guide is often prompted to work harder
to try to draw the couch potato in and help him enjoy the tour.

From the tourist’s perspective, it sounds like, and probably is, a waste
of time. But it’s exactly the opposite for software testers. Couch potatoes
can make very effective testers! The reason is simple, even if it is not intu-
itive: Just because the tester isn’t doing much does not mean that the soft-
ware follows suit. Like the diligent tour guide, it’s often the case that
nonactivity forces software to work very hard because it is busy executing
the “else” clauses in IF-THEN-ELSE conditions and figuring out what to do
when the user leaves data fields blank. A great deal of “default logic” exe-
cutes when a user declines to take the initiative.

A Coach Potato tour means doing as little actual work as possible. This
means accepting all default values (values prepopulated by the applica-
tion), leaving input fields blank, filling in as little form data as possible,
never clicking on an advertisement, paging through screens without click-
ing any buttons or entering any data, and so forth. If there is any choice to
go one way in the application or another, the coach potato always takes the
path of least resistance.

As lazy as this sounds, and granted the tester does little real interaction,
this does not mean the software is not working. Software must process
default values, and it must run the code that handles blank input. As my
father used to say (mostly during basketball games…I grew up in
Kentucky, where the sport of hoops ruled), “That spot on the couch doesn’t
keep itself warm.” And the same can be said of those default values and
error-checking code: It doesn’t execute itself, and missing default cases are
far too common and very embarrassing in released products.

Exploratory Testing in the Large 59

www.it-ebooks.info

http://www.it-ebooks.info/

Tours Through the Seedy District
Much of the material presented in Chapter 3, “Exploratory Testing in the
Small,” would fit into this district if you could blend it into a tour. Inputs
meant to break the software and do general harm are seedy in nature and fit
the general purpose of these tours.

The Saboteur
This is the Saboteur tour, and during it we will attempt to undermine the
application at every possible opportunity. We will ask the application to
read from the disk (by opening a file or using some disk resource), but then
sabotage its attempt to do so by rigging the file operations to fail (perhaps
by corrupting the file in question). We will also ask it to do some memory-
intensive operation when the application is either on a machine with too lit-
tle memory or when other applications are operating in the background
and consuming most of the memory resources.

This tour is simple to conceptualize:

• Force the software to take some action.
• Understand the resources it requires to successfully complete that

action.
• Remove or restrict those resources in varying degrees.

During this tour, a tester will find that there are many ways to rig envi-
ronments by adding or deleting files, changing file permissions, unplug-
ging network cables, running other applications in the background,
deploying the application under test on a machine that has known prob-
lems, and so forth. We might also employ the concept of fault injection10 to
artificially create errant environmental conditions.

The saboteur is very popular at Microsoft, using fault-injection tools
and simpler mechanisms that are illustrated in Chapter 6. In particular,
Shawn Brown has used this tour extensively on Windows Mobile.

The Antisocial Tour
Pub tours are one of my personal passions, and I enjoy them on my own or
as part of a guided walk. I recall a specific tour in which a husband clearly
had coerced his wife to accompany him. She wanted no part of the tour.
When we went into a pub, she stayed outside. When it was time to leave
the pub, she would walk in and order a drink. When we admired scenery
or some landmark, she suddenly found a common squirrel fascinating.
Everything the tour took in, she made it a point to do the opposite. She was
so successful that at the end of the tour another tourist handed her husband
his business card; that other tourist was a divorce attorney.

60 Exploratory Software Testing

10 The concept of runtime fault injection is covered in detail in How to Break Software from page
81 to 120, and again in Appendixes A and B.

www.it-ebooks.info

http://www.it-ebooks.info/

An attorney with a sense of humor notwithstanding, I found her antiso-
cial behavior absolutely inspiring from a test point of view. Exploratory
testers are often trying specifically to break things; and being nice, kind,
and following the crowd is seldom the best way to accomplish that goal. As
a tester, it pays to be antisocial. So if a developer hands you the business
card of a divorce attorney, you may consider it the highest of compliments.

The Antisocial tour requires entering either the least likely inputs and/or
known bad inputs. If a real user would do a, then a tester on the Antisocial
tour should never do a and instead find a much less meaningful input.

There are three specific ways to accomplish such antisocial behavior,
which I organize here into subtours:

• The Opposite tour is performed by entering the least likely input every
chance you get. Testers taking this tour select inputs that are out of con-
text, just plain stupid, or totally nonsensical. How many of that item do
you want in your shopping cart? 14,963. How many pages to print? –12.
The idea is to apply the input that is the least likely input you can come
up with for a specific input field. By doing so, you are testing the appli-
cation’s error-handling capability. If it helps, think of it as testing the
application’s patience!

• Illegal inputs are handled during the Crime Spree tour, and the idea here is
to apply inputs that should not occur. You wouldn’t expect a tourist to
steal a pint on a pub tour, but on a crime spree that’s the analogous behav-
ior. You’ll do the things that are not just antisocial, but downright illegal.
Breaking the law as a tourist will land you in trouble or in jail; breaking
the law as a tester will result in lots of error messages. Expect the Crime
Spree tour inputs to invoke error messages, and if they do not, you may
very well have a bug on your hands. Enter inputs that are the wrong
type, the wrong format, too long, too short, and so forth. Think in terms
of “what constraints are associated with this input,” and then break
those constraints. If the application wants a positive number, give it a
negative number. If it wants an integer, give it a character. Keeping a
tally of the error messages will be important for the next few chapters,
where these tours will actually be used.

• Another aspect of antisocial behavior is embodied in the Wrong Turn
Tour, which directs the tester to do things in the wrong order. Take a
bunch of legal actions and mix them around so that the sequence is ille-
gal. Try checking out before putting anything in your shopping cart. Try
returning an item you didn’t purchase. Try to change the delivery
options before you complete your purchase.

The Obsessive-Compulsive Tour
I’m not quite sure such a tour in real life would be all that popular, and only
its name made me put it in the seedy district. I can’t actually imagine that a
walking tour in which you can’t step on any sidewalk cracks would gain

Exploratory Testing in the Large 61

www.it-ebooks.info

http://www.it-ebooks.info/

many customers beyond the kindergarten demographic. Nor would a bus
that drives only on a single street—just because the driver is desperate not
to miss anything—find many riders. But being obsessive in testing can
pay off.

OCD testers will enter the same input over and over. They will perform
the same action over and over. They will repeat, redo, copy, paste, borrow,
and then do all that some more. Mostly, the name of the game is repetition.
Order an item on a shopping site and then order it again to check if a multi-
ple purchase discount applies. Enter some data on a screen, then return
immediately to enter it again. These are actions developers often don’t pro-
gram error cases for. They can wreak significant havoc.

Developers are often thinking about a user doing things in a specific
order and using the software with purpose. But users make mistakes and
have to backtrack, and they often don’t understand what specific path the
developer had in mind for them, and they take their own. This can cause a
usage scheme carefully laid by developers to fall by the wayside quickly.
It’s better to find this out in testing than after release, which makes this an
important tour for testers to complete.

Putting the Tours to Use
Tours give a structure to testing and help guide testers to more interesting
and relevant scenarios than they would ordinarily come up with using only
freestyle testing. By giving a goal to testers, the tours help guide them
through interesting usage paths that tend to be more sophisticated than tra-
ditional feature-oriented testing where an individual tester will try to test a
single feature in isolation.

Features are a common pivot for testers. A test manager may divide an
application into features and distribute those features across her testers.
Testing features in isolation will miss many important bugs that users, who
mostly use features in combination and in sequence, will encounter. The
tours are an important tool for testers to discover interesting ways of com-
bining features and functionality in single test cases and in sets of test cases:
The more interaction, the more thorough the testing.

Repeatability is another aspect of using the tours that I have noticed in
practice. If two testers are told “go test this app,” it is very likely that the
two of them will test it in completely different ways. If the same two testers
are told “go run this tour,” they will tend to do very similar things and
likely even identify the same bugs. The built-in strategy and goal of the tour
makes them more repeatable and transferable among testers. It also helps a
great deal in educating testers about what constitutes good test design as
the tours guide testers through the question of what should I test.

Some tours are very likely to find many more problems than other
tours, and if careful records are kept, the tours can be rank-ordered late in

62 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

the cycle when every single test case counts. Testers should track which
ones find the most bugs, take the least amount of time to execute, cover the
most code/UI/features, and so forth. This is a side benefit of using actual
strategy to organize testing; the tours provide specific categories of tests
that we can rule in or out as better or worse in some situations. That way,
over time, we can refine our methods and techniques and improve our test-
ing from project to project. You’ll only understand which tours are working
if you pay attention and track your progress in finding bugs, discovering
usability or performance problems, or simply verifying functionality in a
cost- and time-effective manner.

The tours are an excellent way of distributing testing needs among
members of a test team. As you gain comfort with the tours, patterns will
emerge about which tours find certain classes of bugs and which are com-
patible with a specific feature. It is important that such knowledge gets doc-
umented and becomes part of the testing culture within your organization.
Thus the tours not only become a way to test, they are also a way to organ-
ize testing and improve the spread and retention of testing knowledge
across your team.

In many ways, that is what testing is all about: doing your best this
time and making sure that next time you do even better. The tourist
metaphor helps us organize according to this purpose.

Conclusion
Tours represent a mechanism to both organize a tester’s thinking about how
to approach exploring an application and in organizing actual testing. A list
of tours can be used as a “did you think about this” checklist and also help
a tester match application features to test techniques that will properly exer-
cise them.

Furthermore, the tours help testers make the myriad decisions about
which paths to choose, inputs to apply, or parameters to select. Certain
decisions are simply more in the spirit of the selected tour than others and
thus naturally emerge as “better” choices. This is testing guidance in its
purest form.

Finally, at Microsoft, the tours are seen as a mechanism for gathering
tribal knowledge, in that some tours will eventually establish a track record
of success. In Visual Studio, the Landmark tour and the Intellectual tour
have become part of the everyday language of our test community. Testers
know what those tours are, how to apply them, and have a general idea of
how much coverage and what types of bugs will ensue. It makes discussing
testing easier and becomes part of the way we train new testers on our
teams.

Exploratory Testing in the Large 63

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises

1. Write your own tour! Using the tours discussed in this chapter as a
guide, create your own tour. Your tour should have a name, a tie-in
with the tourist metaphor, and you should use it on some software sys-
tem and describe how the tour helps you test.

2. Find at least two tours that give similar testing advice. In other words,
the tours might end up discovering the same bug or covering the same
features in an application. Give an example testing scenario where the
two tours cause a tester to do roughly the same test.

3. Using your favorite web application (eBay, Amazon, MySpace, and so
on), write a test case for that application using any five of the tours dis-
cussed in this chapter as a guide.

64 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5
Hybrid Exploratory Testing Techniques

“When you have a good script you’re almost in more trouble than when you have a terrible script.”
—Robert Downey, Jr.

Scenarios and Exploration
As the preceding two chapters have shown, exploratory testing has a great
deal of strategy associated with it. It is a good combination of structured
thinking and freestyle exploration that can be very powerful for finding
bugs and verifying correctness. This chapter shows how the exploratory
testing mindset can be combined with more traditional scenario-based and
scripted testing. This hybrid technique relaxes much of the rigidity ordinar-
ily associated with scripting and makes good use of the exploratory testing
guidance presented in the last two chapters. It also allows teams that are
heavily vested in existing scripts to add exploratory testing to their arsenal.

Traditional scenario testing is very likely to be a familiar concept for the
reader. Many testers write or follow some sort of script or end-to-end
scenario when they perform manual testing. Scenario testing is popular
because it lends confidence that the product will reliably perform the sce-
nario for actual users. The more the scenario reflects expected usage, the
more such confidence is gained. The added component that exploratory
testing lends to this process is to inject variation into the scenario so that a
wider swath of the product gets tested. Users cannot be constrained to just
execute the software the way we intend, so our testing should expand to
cover these additional scenario variants.

Scenario-based exploration will cover cases that simple scenario testing
will not and more accurately mimics real users, who often stray from the
main scenario: After all, the product allows many possible variations. We
should not only expect that they get used, we should test that they will
work.

The idea behind scenario-based exploratory testing is to use existing
scenarios (we talk about where to get scenarios in this chapter) much as real

www.it-ebooks.info

http://www.it-ebooks.info/

explorers use a map to guide themselves through a wilderness or other
unfamiliar terrain. Scenarios, like maps, are a general guide about what to
do during testing, which inputs to select, and which code paths to traverse,
but they are not absolutes. Maps may describe the location of your destina-
tion but offer multiple ways to get there. Likewise, the exploratory tester is
offered alternate routes and even encouraged to consider a wide range of
possible paths when executing a scenario. In fact, that’s the exact purpose of
this form of exploratory testing: to test the functionality described by the
scenario, adding as much variation as possible. Our “map” isn’t intended to
identify the shortest route, it’s intended to find many routes. The more we
can test, the better; this leads to more confidence that the software will per-
form the scenario robustly when it is in the hands of users who can and will
deviate from our expectations.

There is no formal definition of scenarios that I know of which really
helps testers. Some scenarios are like maps, providing only general guid-
ance, and others are more like printed driving directions with step-by-step
instructions for every turn and intersection. In general, scenarios are writ-
ten prose that follow no fixed format but describe how the features and
functionality of the software under test work to solve user problems. A sce-
nario can describe inputs, data sources, environment conditions (things
such as Registry settings, available memory, file sizes, and so forth) as well
as UI elements, outputs, and specific information about how the software
under test is supposed to react when it is used.

The scenarios themselves often originate from outside the tester’s
domain. They can be gleaned from artifacts inherited from design and
development. Requirements documents and specifications typically
describe their purpose in the form of scenarios. Marketing departments
sometimes work with scripts for product demos; some forms of agile devel-
opment require the creation of user stories; requirements are often docu-
mented with example scenarios of expected usage. In many cases, testers
don’t need to write the scenarios as much as gather them. In fact, recordings
made (using capture/replay tools, keystroke recorders, and so forth) during
testing are also legitimate scenarios, and thus the tours of the previous
chapter can be the source of a great number of high-quality scripts and sce-
narios. Any and all such scenarios can be used as the starting point for
exploration.

In general, a useful scenario will do one or more of the following:

• Tell a user story

Scenarios that tell user stories generally document a user’s motivation,
goals, and actions when using the software. User stories aren’t often at
the detailed level of “the users clicks here,” but more general, as in “the
user enters her banking information.” It’s the job of the tester to bring
the scenario down to a level of detail appropriate for a test case.
User stories are an excellent starting point for exploratory testing.

66 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

Hybrid Exploratory Testing Techniques 67

• Describe a requirement

Requirements are capabilities that the software possesses, and written
requirements are usually plentiful for software projects of any decent
size. Scenarios that describe requirements should talk about how the
product is used to perform that capability.

• Demonstrate how a feature works

Scenarios that demonstrate features are usually pretty detailed and spe-
cific. They would specify which menus are used, which buttons are
pressed, and what data is entered at a fine level of detail. These often
appear in online help or printed instructions for users.

• Demonstrate an integration scenario

Products that integrate with other applications or share information
often have integration or end-to-end (abbreviated e2e) scenarios
defined for them. In this case, scenarios document how features work
together and how a user would use those integrated features on some
real task.

• Describe setup and installation

Instructions that describe initial installation procedures, setup and con-
figuration, account creation or other administrative tasks, optional
installation flags, and customization can readily be used as scenarios
for exploratory testing. Guidance from user manuals and online help
systems are an excellent source of scenarios for setup and installation.

• Describe cautions and things that could go wrong

Documents that describe troubleshooting and maintenance procedures
make very good scenarios. Because these are the features a user would
exercise in the event something goes wrong, it is important that they
work correctly. Artifacts such as threat models or attack trees that
describe tampering attempts are also a good source of such “negative”
usage scenarios.

Exploratory testers should work hard to ensure they gather as many
scenarios as possible from all of these categories. It is then our task to follow
the scenarios and inject variation as we see fit. It is how we choose to inject
this variation that makes this task exploratory in nature and that is the sub-
ject we turn to next.

Applying Scenario-Based Exploratory Testing
Testers often use scenarios that describe user intent to test the software.
Scenario testing works because it mimics the way a real user would behave,
and thus it finds bugs that, if they survived testing, would plague actual
users.

www.it-ebooks.info

http://www.it-ebooks.info/

But seldom do real users confine themselves to usage of the software as
described by the scenario. Users are free to vary from the scenario by
adding steps or taking them away, and they do so according to their own
schedules and timetables. It is our task to second-guess such variation and
ensure they get tested because they represent some of the most likely ways
in which the software will be used after it has been released.

Injecting variation into scenarios is what this form of exploratory test-
ing is all about. A single written scenario can be turned into many individ-
ual test cases by methodically considering choices in input selection, data
usage, and environmental conditions. Two main techniques are used to
accomplish this: scenario operators and tours.

Introducing Variation Through Scenario Operators
Exploratory testing can be combined with scenario testing to help a tester
explore minor and even major variations on a specific scenario. Where a
scenario describes specific actions for a tester to take, the techniques
described next can be used to permute those actions and create deviations
from the scenario that will test different states and code paths. Where a sce-
nario describes general activity, these techniques can be used to select
among the possible choices and allow a tester to consider alternate paths in
a more methodical manner.

We introduce the concept of scenario operators to achieve this goal.
Scenario operators are constructs that operate on steps within a scenario to
inject variation into the scenario. When we apply a scenario operator to an
existing scenario, we get a new scenario that we call a derived scenario. A
tester can apply one or more scenario operators to a given scenario and
even apply operators to derived scenarios. The amount and number of such
operators is, in true exploratory fashion, up to the individual tester and can
be performed in advance of testing or, my preference, on-the-fly.

The scenario operators in the following subsections are the ones most
testers will find useful.

Inserting Steps
Adding additional steps to a scenario can make them more diverse and
allow them to test more functionality. Inserting one or more steps into a sce-
nario creates more opportunity for the software to fail. Code paths may be
executed with different data, and the state of the software will be varied in
ways that are different from what the original scenario allowed. The addi-
tional steps can be

• Adding more data: When the scenario asks for, say, 10 records to be
added to a database, the tester should increase that to 20 or 30 records
or even more if it makes sense to do so. If the scenario requires an
item to be added to the shopping cart, add that item and then some
additional items on top of that. It is useful also to add related data so

68 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

that if the scenario calls for a new account to be created, we may also
add information to that account over and above what the scenario
calls for.
The tester should ask herself, “What data is used in this scenario and
how would it make sense to increase the amount of data I enter?”

• Using additional inputs: When the scenario calls for a series of inputs
to be entered, find more inputs that can be added. If the scenario asks
that the tester create a product review for some online shopping site,
the tester can choose to add ratings for other customer reviews, too. The
idea is to understand what additional features are related to the fea-
tures in the scenario and add inputs to test those new features as well.
The tester should ask herself, “What other inputs are related to the
inputs used in the existing scenario?”

• Visiting a new part of the UI: When the scenario calls for specific
screens and dialog boxes to be used, the tester should identify other
screens or dialogs and add those to the scenario. If the scenario calls for
a tester to pay a bill on a financial services website, the tester could
choose to also visit the pages to check account balances before submit-
ting the payment.
The tester should ask herself, “What other parts of the UI are related to
the parts used in the existing scenario?”

Eventually, the steps need to loop back into the original scenario. It
helps to keep in mind that the idea is to enhance the scenario, not to change
it from its fundamental purpose. If the scenario was meant to add records to
the database, that should still be its primary purpose, and that goal should
not change. What the tester is doing in this scenario operator is adding
inputs, data, or variation that makes the scenario longer but does not alter
its core purpose.

Removing Steps
Redundant and optional steps can also be removed with the idea being to
reduce the scenario to its shortest possible length. The derived scenario may
then be missing steps that set preconditions for other steps, testing the
application’s ability to recognize missing information and dependent func-
tionality.

A tester can apply this scenario operator in an iterative fashion, remov-
ing one step at a time. In this case, the scenario actually gets executed
against the software under test each time a step is removed until the mini-
mal test case ends the cycle. For example, a scenario that requires a tester to
log on to a shopping site, search for items, add them to a shopping cart,
enter account info, complete the purchase, and finally log off would be
eventually reduced to just logging on and logging off (an interesting and
important case to test!) with a single step being removed each time the test
case is run.

Hybrid Exploratory Testing Techniques 69

www.it-ebooks.info

http://www.it-ebooks.info/

Replacing Steps
If there is more than one way to accomplish some specific step in a scenario,
this scenario operator is the way to modify the scenario to accomplish that.
It’s really a combination of the preceding two operators in that replacement
is the same thing as removing and then adding.

The tester must research alternate ways of performing each of the steps
or actions in a scenario. For example, instead of searching for an item to
purchase, we might simply use its item number to look it up directly.
Because the software under test provides both of these as options, we can
create a derived scenario to test the alternative. Similarly, we might use key-
board shortcuts instead of the mouse or choose to bypass creating an
account and just purchase an item without registering on the site. Testers
need to be aware of all the different options and functionality that exists
within their application to be truly effective at applying this scenario
operator.

Repeating Steps
Scenarios often contain very specific sequences of actions. This operator
modifies such a sequence by repeating steps individually or in groups to
create additional variation. By repeating and reordering steps, we are test-
ing new code paths and potentially finding bugs related to data initializa-
tion. If one feature initializes a data value that is used by another feature,
the order in which the two features is executed matters, and reordering
them may cause a failure.

Often, certain actions make sense to repeat. For example, if we are test-
ing a financial services website for the general scenario of log in to an
account, check the balance, pay bills, make a deposit, and then log out, we
may repeat the “check the balance” action after we pay the bills, and then
again after making the deposit. The general scenario is the same, but we
have repeated an action that a user is also likely to do. The same can be said
of actions such as “view the shopping cart,” which could happen over and
over during a scenario for an online shopping site.

Repetition can also occur with multiple actions, so that we pay one bill,
check the balance, pay another bill, check the balance, and so forth. The
tester’s task is to understand the variability and create repetitive sequences
as appropriate.

Data Substitution
It is often the case that a scenario will require a connection to some data-
base, data file, or other local or remote data source. The scenario then speci-
fies actions that the tester performs to cause that data to be read, modified,
or manipulated in some way. Testers need to be aware of the data sources
that the application under test interacts with and be able to offer variations.

70 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

Are there backup databases, alternate test databases, real customer
databases, and so forth that are accessible to testers? If so, use those when
testing the scenarios instead of the default. What if the data source is down
or otherwise unavailable? Can we create or simulate that situation so that
we can test how the system under test reacts? What if the data source holds
ten times as many records? What if it only holds one record?

The idea here is to understand the data sources the application connects
to or uses and to make sure that interaction is robust.

Environment Substitution
As discussed in Chapter 3, “Exploratory Testing in the Small,” testing is
necessarily dependent on the environment in which the software resides
when we run our test cases. We can run billions of tests successfully when
the software is in one environment only to have them all fail when the soft-
ware is put into a different environment. Therefore, this operator is used to
ensure those alternate environments receive testing.

The simple part of this operator is that the scenarios themselves don’t
actually change, only the system on which the software is running when the
scenario is applied. Unfortunately, understanding which parts of the envi-
ronment to change, and actually enacting that change, is very difficult. Here
are some considerations:

• Substitute the hardware: The easiest part of the environment to vary is
the hardware on which the application under test case runs. If we
expect our users to have a range of hardware from fast and powerful to
antiquated and slow, we need to acquire similar machines for our test
lab and ensure that we have beta customers willing to help us with test-
ing and pre-release validation. Of course, this is an excellent use of vir-
tual machines as well.

• Substitute the container: If our application runs inside a so-called con-
tainer application (like a browser), we need to ensure that our scenarios
run in all the major containers we expect our user to have access to.
Browsers like Internet Explorer, Firefox, Opera, and Chrome or plat-
forms like Java or .NET or even animation tools like Flash and
Silverlight will impact the way our applications run.

• Swap out the version: All the previous containers also have earlier ver-
sions that still enjoy market share. How does your app run in the earlier
versions of Flash?

• Modify local settings: Does your application use cookies or write files
to user machines? Does it use the local Registry? What happens when
users modify their browser settings to limit these types of activity?
What happens if they change your application’s Registry settings
directly (without going through your app)? If you don’t test these
things, your users likely will, and their doing so may bring a nasty
post-release surprise to your engineering team. It’s better to find out for
yourself before the app ships how it will handle these things.

Hybrid Exploratory Testing Techniques 71

www.it-ebooks.info

http://www.it-ebooks.info/

When using any of these operators to create derived scenarios, it is gen-
erally the case that we try to stay as true to the original scenario as possible.
Using too many operators or using operators in such a way as to make the
origin of the derived scenarios unrecognizable is usually not useful. But
don’t take my word for it. If you try it and it finds good bugs, then it’s a
useful technique! However, such broader based modification of tours is the
job of the second technique to inject variation in scenarios: tours. This is the
subject we turn to next.

Introducing Variation Through Tours
At any point in the execution of a scenario, one can stop and inject varia-
tions that will create derived scenarios. The scenario operators described
above are one way to do this, and using the tours is another. I like to think
of this use of tours as side trips. The idea is simple: A tester reviews the
scripts looking for places where decisions can be made or places where it is
possible to fork the logic within the script and go in a completely different
direction before returning to the main path dictated by the script.

I like to use the analogy of a car tour or even a hike in the woods on
foot. It’s often that on such a trip there is some scenic overlook at which one
can park the car and take a short walk to some monument or beautiful view
before returning to the car and continuing the voyage. That short side trip
represents the tour, and the longer car ride is the scenario. This is a useful
technique for adding variation to scenarios.

The key difference between scenario operators and tours is that tours
end up creating longer side trips, in general, than operators. Operators
focus on small, incremental changes and optional steps in a scenario, and
tours can actually create derived scenarios that are significantly longer and
broader in scope. Just as some side trips can turn into a destination all their
own, it may be that the tours overwhelm the original scenario, and this can
actually be a very desirable effect. It’s good to always remember that
exploratory testing is about variation, and when scenarios are combined
with tours, the result can add significant variation. It’s up to the tester to
determine whether the variation is useful, and it is often the case that one
has to build up some history to determine which tours are most effective for
a given application.

Here is a list of tours that are effective as side trips during scenario-
based exploratory testing. I suggest rereading the actual tour as presented
in Chapter 3 along with the additional description here. After you practice
the tours a few times, you should be able to determine how to best follow
this advice for your particular situation.

72 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

The Money Tour
Can any major features not already used in the scenario be easily incorpo-
rated into the scenario? If so, modify the scenario to include the use of a
new feature or features. Assuming that the original scenario already
included some features, this will help test feature interaction in a scenario-
driven way. If the scenario was a realistic user scenario, it’s even better
because we are mimicking the user including another feature into his exist-
ing work habits (as represented by the scenario). There are many users who
will learn a feature, master it, and then move on to new features as their
familiarity with the application grows. This technique mimics that usage
pattern.

The Landmark Tour
Start with a scenario and pick specific feature landmarks out of the sce-
nario. Now randomize the order of the landmarks so that it is different than
the original scenario. Run some tests with the new order of landmark fea-
tures and repeat this process as often as you think is necessary. Obviously,
that will depend on how many landmarks you are dealing with; use your
own judgment. This combination of the Landmark tour within a structured
scenario has been very valuable at Microsoft.

The Intellectual Tour
Review the scenario and modify it so that it makes the software work
harder. In other words, ask the software hard questions. If the scenario requires
the software to open a file, what is the most complicated file you can give
it? If the software asks for data, what is the data that will make it work the
hardest? Would very long strings do the trick? What about input that
breaks formatting rules (for example, Ctrl characters, Esc sequences, and
special characters)?

The Back Alley Tour
This is an interesting variation on the Money tour. Both tours suggest we
inject new features into the scenario, but the Back Alley tour suggest the
least likely or least useful features instead. Granted, this variation will find
more obscure bugs, but if an application is widely used, there may be no
such thing as least likely because every single feature will get used by
someone, and all paying customers are important.

The Obsessive-Compulsive Tour
This one is straightforward: Repeat every step of the scenario twice. Or
three times. Be as obsessive as you like!

Specifically, any step in a scenario that manipulates data is a good one
to repeat because it will cause internal data to be manipulated and internal
state to be set and then changed. Moving data around the software is
always an effective way to test and to find important bugs.

Hybrid Exploratory Testing Techniques 73

www.it-ebooks.info

http://www.it-ebooks.info/

The All-Nighter Tour
This one is best when a scenario can be automated or even recorded and
then played back. Just run the scenario over and over without ever exiting
the application under test. If the scenario specifies that the software be shut
down, remove that clause and keep the scenario running over and over
again. Choose scenarios (or even derived scenarios) that make the software
work hard, use memory and the network, and otherwise consume
resources that might over time cause problems.

The Saboteur
Scenarios are a great start for sabotage. Review the scenario or derived sce-
nario and make a note every time it uses some resource (another computer,
the network, file system, or another local resource) that you have access to,
and then when you execute the scenario, sabotage that resource when the
scenario calls for it to be used.

For example, if a scenario causes data to be transmitted over a network,
unplug the network cable (or disconnect it via the OS or turn off the radio
switch for wireless connections) just before or while you are executing that
particular step of the scenario. Document all such sabotage points and exe-
cute as many of them as sensible or prudent.

The Collector’s Tour
Document every output you see as you execute scenarios and derived sce-
narios. You can even score scenarios based on the number of such outputs
they force. The more outputs, the higher the score for that scenario. Can you
create (or derive) new scenarios that cause outputs that are not in any of the
other scenarios? Can you create a super scenario that causes the absolute
maximum number of outputs possible? Make a game out of it and let your
testers compete to see who can generate the most outputs, and give prizes
to the winners.

The Supermodel Tour
Run the scenario but don’t look past the interface. Make sure everything is
where it is supposed to be, that the interface is sensible, and watch particu-
larly for usability problems. Choose scenarios that manipulate data, and
then cause it to be displayed on the UI. Force the data to be displayed and
redisplayed as often as possible and look for screen-refresh problems.

The Supporting Actor Tour
I think of this as the Nearest-Neighbor tour, in that instead of exercising the
features as described in the script, the testers find the nearest neighboring
feature instead.

74 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

For example, if a scenario specifies an item on a drop-down menu,
choose the item above or below the one specified. Whenever a choice is pre-
sented in the scenario, choose not the one suggested but one right next to it
(either by proximity on the interface or close in semantic meaning). If the
scenario specifies using italics, use boldface; if it wants you to highlight
some text, highlight other text instead, always choosing that which is “near-
est” in whatever way makes the most sense.

The Rained-Out Tour
This is the tour that not only makes good use of the cancel button (press it
whenever you see it while running the scenario) but also in starting and
stopping execution. Review the scenarios for time-consuming tasks such as
complicated searches, file transfers, and the like. Start those features, and
then cancel them using provided cancel buttons, hitting the Escape key and
so forth.

The Tour-Crasher Tour
This tour is new for this chapter and didn’t appear earlier when the tourist
metaphor was first described. Indeed, it is specific to scenario-based testing.
The concept is based on those people who don’t pay for the tour when it
begins, but join it in progress by simply melting into the crowd and acting
like they’ve been there all the time. They not only crash a tour, but they also
may even hop from tour to tour as they encounter other groups (in a
museum or some historical building where tours are continuous) of tourists.

We’re going to adopt this process for hopping from scenario to scenario
as a way of combining two or more scenarios into a single scenario of
mixed purpose. Review your scenarios and find ones that operate on com-
mon data, focus on common features, or have steps in common. It is this
overlap that will allow you to seamlessly leave one scenario and pick up
the remainder of another. Just like the guy who peels himself away from
one tour and melts into the crowd of another. He’s able to do it because for
some small period of time, the two tour groups are sharing the same space
on the museum floor. We’re able to do it as testers because the scenarios
both go through the same part of the application. We’ll follow one scenario
to that place but then follow the other when we leave it.

Conclusion
Static scenario testing and exploratory testing do not have to be at odds.

Scenarios can represent an excellent starting point for exploration, and
exploration can add valuable variation to otherwise limited scenarios. A
wise tester can combine the two methods for better application coverage
and variation of input sequences, code paths, and data usage.

Hybrid Exploratory Testing Techniques 75

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises

1. Name the two ways to create derived scenarios from existing scripts or
scenarios as described in this chapter. Which one do you think would
be likely to find the most bugs? Justify your answer.

2. Name and describe at least three software development artifacts from
which scenarios can be gathered. Can you come up with a way to create
a scenario that is not described in this chapter?

3. When creating derived scenarios, what is the primary difference
between using tours and using scenario operators? Which will yield the
most variation from the original scenario?

4. Which scenario operator is related to the Obsessive-Compulsive tour?
How would one get the same derived scenario from this operator and
the OCD tour?

5. Pick a tour from the previous chapter that is not used in this chapter
and see whether you can reason about how it might be used effectively
in scenario-based exploratory testing.

6. What properties of a scenario would make it a good candidate for the
All-Nighter tour? Why?

76 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6
Exploratory Testing in Practice

“Not all who wander are lost.”
—J. R. R. Tolkien

The Touring Test
A testing technique is nothing until it leaves home and makes a name for
itself in the real world. It is one thing to talk of adventure and travel, and
quite another to live it. This chapter was written by the first testers to apply
the tourism metaphor purposefully on real projects and under real ship
pressure.

The in-the-small and especially in-the-large techniques were born
within the Developer Division of Microsoft and saw their first use within
our teams in Redmond, Washington, and our India Development Center at
the hands of David Gorena Elizondo and Anutthara Bharadwaj, respec-
tively. They saw their first public unveiling at EuroSTAR 2008 in Den Haag,
Netherlands,1 in November 2008. Since then, I am personally aware of some
dozens of groups outside Microsoft who have made them work.

Later that same month, two efforts were launched inside Microsoft to
take the tours “on tour.” A formal effort within Visual Studio was started
that is still ongoing at the time of this writing. At the same time, a broader
grassroots effort began companywide. I began it by sending an email to the
Test Managers and Test Architects in the company, those testers of the high-
est level and broadest reach within Microsoft, asking to be referred to tal-
ented testers, regardless of their experience. I specifically asked for
promising manual testing talent.

I was flooded with responses and whittled down the pool with per-
sonal interviews, frankly by choosing those who seemed most enthusiastic.
I like working with passionate people! Then we began training, and each
tester read and edited this text. After that, we began touring.

1 You can find information about EuroSTAR at http://qualtechconferences.arobis.com/
content.asp?id=91.

www.it-ebooks.info

http://qualtechconferences.arobis.com/content.asp?id=91
http://qualtechconferences.arobis.com/content.asp?id=91
http://www.it-ebooks.info/

Many product lines were involved, from games to enterprise, mobile to
cloud, operating system to web services. I’ve selected five of the most
informative to appear here. The remainder are still ongoing, so don’t be sur-
prised if there are follow-ups on Microsoft blogs or elsewhere.

As you will see in this discussion, many of the tours survived being put
into practice intact and were applied exactly how they were documented in
Chapter 4, “Exploratory Testing in the Large.” However, many variations
were crafted on-the-fly, and in some cases new tours were created from
scratch. Not only is this acceptable, it’s desirable. I expect any team to find
tours that work for them and tours that don’t. That’s why this chapter is
here: to show how the tours work in practice.

The experience reports that follow are from the following Microsoft
testers and appear with their permission:

• Nicole Haugen, Test Lead, Dynamics AX Client Product Team
• David Gorena Elizondo, SDET, Visual Studio Team Test
• Shawn Brown, Senior Test Lead, Windows Mobile
• Bola Agbonile, Software Development Engineer in Test, Windows
• Geoff Staneff, SDET, Visual Studio Team System

Touring the Dynamics AX Client
By Nicole Haugen

My team is responsible for testing Dynamics AX’s client. Dynamics AX is an
enterprise resource planning, or ERP, solution that was implemented more
than 20 years ago in native C++ and was acquired when Microsoft pur-
chased Navision. As the client team, we are considered to be a “foundation”
team that is responsible for providing forms, controls, and shell functional-
ity that the rest of the application is built on. Prior to this, my team was pri-
marily testing public APIs, so Dynamics AX was a mind shift to testing
through a GUI. When we made this transition, we learned several things:

• Many of the bugs that we found were not being caught by the test cases
that we had identified in our test designs.

• Testing through the GUI introduced a seemingly infinite number of sce-
narios and complex user interactions that were not easily captured
using automated tests.

• Whether a test is automated or manual, it is a regression test that must
be maintained. My team has thousands of tests, so we must constantly
consider the return on investment associated with adding a new test
case to our regressions.

• Dynamics AX is a massive application and there was a lot about it we
did not know, let alone how it should be tested.

78 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

Exploratory Testing in Practice 79

Exploratory testing helped us to address all of the proceding issues. As
a result, we have incorporated it into our process in the following ways:

• Before each feature is checked in, a tester performs exploratory testing
on the code; this is to find important bugs fast and preferably, before
they are ever checked in. We also follow this same practice for check-ins
related to fixes of critical or high-risk bugs.

• Exploratory testing is used to help with the development of test cases
while writing our test designs. It helps us to discover new scenarios
that may have been missed in requirements.

• During our manual test pass, we use the test scripts as a jumping-off
point to inject exploratory testing, as described in Chapter 5, “Hybrid
Exploratory Testing Techniques.” It has been my personal experience
that the manual tests as they are written rarely detect new issues; how-
ever, with even the slightest detour from the test, many bugs are found.

• During bug bashes, we perform exploratory testing, which has helped
lead us to investigate other areas outside of the current feature area to
discover related issues.

Useful Tours for Exploration
The concept of tours makes exploratory testing much more concrete, teach-
able, and repeatable for us. This section describes a few tours that have
been particularly useful for finding bugs in Dynamics AX.

Taxicab Tour
When traveling by mass public transportation, there is always risk that
travelers may board the wrong route or get off at the wrong stop. Another
drawback is that it is often impossible to take a direct route to a desired
location. In the rare case that it is, the exact same route is usually taken over
and over, with no variety to offer those that have visited the destination
more than once. One surefire alternative is to travel by taxicab. While the
fare of a taxicab costs more, the old adage “you get what you pay for” defi-
nitely applies. In a city such as London, where there are more than 25,000
streets, cab drivers must take rigorous exams to ensure that they know
every route possible to get from point A to point B within the city. You can
bet your bottom dollar (or should I say pound) that cab drivers know which
route has the shortest distance, which offers the shortest amount of travel
time, and even which is the most scenic. Furthermore, each and every time,
passengers will consistently arrive at their specified location.

This same type of tour is also applicable to testing software applica-
tions. To reach a desired screen, dialog, or some other piece of functionality,
there are often myriad routes that the user can take. As a result, testers have
the same responsibility as taxicab drivers, in that they must educate them-
selves on every possible route to a specified location. Testers can then lever-
age this knowledge to verify that each route consistently delivers users to

www.it-ebooks.info

http://www.it-ebooks.info/

their target destination. In some situations, the state of the target destina-
tion may be expected to vary depending on the route, which should also be
verified. Notice that this tour is a derivative of the Obsessive-Compulsive
tour, in that the ultimate goal is to repeat a specific action; however, rather
than exercising the exact same path to the action over and over, the key dif-
ference is that this tour concentrates on exercising different paths.

Consider an example using Microsoft Office’s Print window. To open
this window, users have various options:

• They can send the Ctrl+P hotkey.
• They can select the Print menu item through the Office menu button.
• They can click the Print button on the toolbar of the Print Preview

window.

No matter which of these routes the user chooses, the end result should
be the same: The Print window opens.

Conversely, there is also the concept of the Blockaded Taxicab tour. The
objective of this tour is to verify that a user is consistently blocked from a
destination regardless of the route taken. There are many different reasons
why a user may be prevented from accessing functionality within an appli-
cation, whether it is because the user does not have sufficient permissions
or it is to circumvent the application from entering into an invalid state.
Regardless, it is important to test each and every route because it is surpris-
ing how many times a developer overlooks ones.

Although the preceding example involving the Print window is becom-
ing somewhat contrived at this point, let’s continue with it for the sake of
simplicity. Suppose that a user should be prohibited from printing hard
copies. Because we know that there are many different ways to access the
Print window, it is important to verify that no matter how the user tries to
access this window that the user is consistently prevented. This means that
at a minimum, the Ctrl+P hotkey should result in a no-op and that the Print
menu item and toolbar button should become disabled.

Multicultural Tour
One great aspect of London is the sheer diversity of people that it encom-
passes. Without leaving the city, let alone the country, a tourist can experi-
ence cultures from around the world. For example, a tourist might choose
to visit London’s Chinatown, where the delicious aroma of Chinese cuisine
can be smelled and traditional Chinese scripture can be viewed throughout.
Similarly, a tourist may opt for an Indian restaurant tucked within one of
London’s busy streets, where diners enjoy smoking tobacco out of hookahs.
Tourists can choose to submerse themselves into many different cultures as
an exciting and wonderful way to spend a vacation in London.

The Multicultural tour applies to testing because it is important that
testers consider the implications of providing software that is localized to
different countries around the world. It is essential that language, currency,

80 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

formatting of dates, types of calendars, and so forth be adapted appropri-
ately to the end users’ region. In addition, it is important that functionality
continues to work as expected, regardless of the locale.

Although testing a product’s localization can be very complex, here are
a few basic ideas to get you started. Notice that you do not necessarily need
to be fluent in a different language to perform these types of tests:

• A basic aspect of localization is that no text should be hard-coded (and
thereby prohibiting it from being translated to the appropriate lan-
guage). A great way to test this is simply to change the application’s
and operating system’s language and verify that labels, exception mes-
sages, tooltips, menu items, window captions, and so on no longer
appear in English. Also, it is likely that there are specific words that
should not be translated, which should also be verified, such as words
that are part of a brand name.

• Try launching the application under test in a right-to-left language,
such as Arabic; verify that controls and windows behave correctly. With
right-to-left languages, it is interesting to change the size of windows
and make sure that they repaint correctly. Also, test controls, especially
custom-implemented controls, and make sure that they still function as
they did in left-to-right mode.

This list is obviously far from being comprehensive but at least gives an
idea of general aspects of an application to verify without necessarily get-
ting language-specific.

The Collector’s Tour and Bugs as Souvenirs
This section is dedicated to the bugs that have been collected as souvenirs
while traveling throughout Dynamics AX using the Taxicab and
Multicultural tours. While these tours have helped to find many bugs, here
are a few of my favorites.

A Bug Collected Using the Blockaded Taxicab Tour
Dynamics AX has a known limitation: Only eight instances of the applica-
tion’s workspace can be opened simultaneously.2 Any more than eight will
cause the entire application to crash (which, by the way, is an issue that
could have been caught by using the Test One, Get One Free tour). Because of
the complexity involved with fixing this issue, it was decided that users
should simply be prevented from opening more than eight workspaces so
that they never get into the situation where the application crashes.

When I learned of this behavior, the Taxicab tour immediately came to
mind. Specifically, I began to think of all the possible ways that a user can
open up a new workspace. Like any experienced taxicab driver, I came up
with several routes:

Exploratory Testing in Practice 81

2 Note that although multiple application workspaces are created, in this scenario they are tied
to a single Ax32.exe process.

www.it-ebooks.info

http://www.it-ebooks.info/

• Clicking the New Workspace button on the Dynamics AX toolbar
• Sending the Ctrl+W hotkey
• Executing the New Workspace menu item under the Dynamics AX

Windows menu
• Clicking the New Workspace button that exists in the Dynamics AX

Select Company Accounts form

Once I was equipped with all the possible routes, I then proceeded to
open seven application workspaces. With seven workspaces open, my first
objective was to verify that an eighth workspace could be opened using
each of the routes. As it turned out, each route was successful in doing so.

Next I applied the Blockaded Taxicab tour. Now that I had eight work-
spaces open, my objective was to verify that the user was blocked from
opening a ninth workspace. I attempted to travel the first three possible
routes, and in each case I was prevented. However, when I got to the fourth
route, it was still possible to create a new workspace. As a result, I was able
to launch a ninth workspace, which caused the application to crash.

A Bug Collected Using the Taxicab Tour
Like most applications, Dynamics AX provides several common menus to
the user, such as View, Windows, and Help. To test Dynamics AX menu
behavior, I executed each menu item to ensure that the desired action was
performed. This, of course, is a pretty straightforward approach; so to make
it more interesting, I decided to apply the Taxicab tour. Specifically, I exe-
cuted menu items by traveling the following routes:

• Clicking the menu and menu item with the mouse
• Sending the hotkey that corresponds to the menu item
• Sending the menu’s access key followed by the menu item’s

accelerator key

Sure enough, I discovered a bug when I used the third route (using the
access and accelerator keys to execute the menu item). For example, to exe-
cute the Help menu’s Help menu item, I attempted to send the Alt+H
access key to open the menu, followed by the H accelerator key to execute
the menu item. Surprisingly, I did not get that far because the Help menu
failed to even open. On the bright side, this was an important accessibility
issue that was identified and fixed before the product was shipped.

Bugs Collected Using the Multicultural Tour
Dynamics AX is shipped in many different languages, including right-to-
left languages, so it is important to verify that the application supports
globalization and localizability. The Multicultural tour has helped to dis-
cover many bugs in this area.

82 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

Example 1
One bug that I discovered while using the Multicultural tour involves the
tooltips that display menu access key information to the user. Consider the
Windows menu tooltip, which in English is displayed as Windows <Alt+W>.

I opened Dynamics AX in various languages, such as Italian, and noticed
that the Windows menu tooltip displayed Finestre <Alt+W>. Although the
name of the Windows menu had been properly translated, the access key
had not. Instead, it should have displayed Finestre <Alt+F>.

Example 2
A majority of Dynamics AX controls are custom, so it’s very interesting to run
the application in right-to-left languages and verify that the controls behave
correctly. In fact, a great example of a bug found by one of my colleagues
involves the Dynamics AX Navigation Pane, which can be put in either an
expanded (see Figure 6.1) or collapsed state (see Figure 6.2) by the user:

Exploratory Testing in Practice 83

FIGURE 6.1 Expanded Navigation Pane.

FIGURE 6.2 Collapsed Navigation Pane.

www.it-ebooks.info

http://www.it-ebooks.info/

Notice that the << and >> buttons at the top of the Navigation Pane are
used for changing the pane’s state. When my colleague launched Dynamics
AX in a right-to-left language, clicking the << arrow button simply failed to
collapse the Navigation Pane; however, these buttons worked fine in left-to-
right languages.

Both of these bugs would have gone undiscovered if we had not taken
the Multicultural tour through Dynamics AX.

Tour Tips
While applying the tours described in Chapter 4, I compiled the following
list of tips as a “traveling” companion for the savvy tester.

Supermodel Tour
When we are testing a product with a GUI, the Supermodel tour is vital to
eliminating glaring flaws in the interface. A useful tip for using this tour to
find even the most subtle flaws is to combine it with some of the other tours
described in Chapter 4.

Combine with Supporting Actor Tour
While perusing the interface, always take care to look beyond the current
window or control that you are primarily focused on to see how the rest of
the application appears. This technique is comparable to the Supporting
Actor tour, where you must “turn your attention 10 degrees left or right” to
get the full effect. For instance, I once found a bug where I opened a pop-up
window on a form and the title bar became grayed-out, thereby making it
appear as though the entire form had lost focus. While my main attention
was on the pop-up window, by taking a step back to look at the entire form,
I caught a very subtle bug with the title bar.

Combine with Back Alley\Mixed Destination Tour
The main premise of the Back Alley\Mixed Destination tour is to test how dif-
ferent features interact with one another. With respect to a GUI, it’s impor-
tant to verify how features of the external environment affect the
appearance of an application. Here are a few examples:

• Modify the OS display settings, such as to high contrast, and take a
Supermodel tour through the product to verify that all controls, icons,
and text display properly.

• Use Terminal Services to remote into the machine that has the applica-
tion installed and verify that there is no painting or flickering issues as
windows in the application are drawn.

• Run the application with dual monitors and verify that menus and win-
dows display in the correct monitor.

84 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

Because most first impressions are based on looks alone, bugs involving
the appearance of an application can lead to perceptions of an unprofes-
sional, poorly engineered product. Unfortunately, these types of bugs are
often deemed as low priority to fix. A handful of appearance-related bugs
in an application may seem harmless, but together they often have a cumu-
lative effect on usability and therefore should not be ignored.

Rained-Out Tour
The Rained-Out tour concentrates on terminating functionality and verifying
that the application continues to behave correctly. The two tips that I pro-
vide for this tour are actually already mentioned in Chapter 4; however, I
want to emphasize them here because they truly are very helpful in detect-
ing bugs.

First, it is important to change the state of the object under test before
canceling out of it. Let’s use a form as an example: Do not just open a form
and immediately close it. Instead, alter either the form’s or application’s
state before closing it. To demonstrate this, here are some actual bugs that I
have found in Dynamics AX using this technique:

• I opened a form and then opened a pop-up window that was parented
by the form. With the pop-up window still open, I clicked the form’s X
button to close it. As a result, the application crashed because the form
failed to properly close the pop-up window before closing itself.

• After opening the User Setup form, I left the form open and switched to
a different module in the application. Next, I clicked the User Setup
form’s Cancel button, which caused the application to crash.

Second, it is imperative to reattempt the same scenario after canceling
out of an operation. I used this very technique recently while performing
exploratory testing for a new feature planned for the 6.0 release of
Dynamics AX and found yet another client-crashing bug. This new feature
ensures that creates, updates, and deletes for inner/outer joined data
sources occur within a single transaction. While testing updates, I decided
to cancel (discard) these changes by clicking the Restore button on the
form’s toolbar. As a result of clicking Restore, my changes were discarded
and replaced by values in the database table. I then reattempted to update
the same record again, and lo and behold Dynamics AX crashed.

Landmark Tour
Some applications are so large, such as ERP solutions, that it’s overwhelm-
ing to even think where to start with the Landmark tour, simply because
there are so many features. In some cases, testers may not even be very
familiar with other features outside their primary area of responsibility. A
tip for combating this issue is to pair up with another person who is an
expert in a complementary feature area.

Exploratory Testing in Practice 85

www.it-ebooks.info

http://www.it-ebooks.info/

Using Tours to Find Bugs
By David Gorena Elizondo

I started working for Microsoft as soon as I graduated from college. (I had
done a summer internship for Microsoft a year prior.) I joined as a Software
design engineer in Test, and I was part of the first version of Visual Studio
Team System in 2005. My job at the time included testing the tools within
Visual Studio for unit testing, code coverage, remote testing, and so forth. I
am a tester who tests testing tools!

Throughout my four years at Microsoft, I became involved with the dif-
ferent testing approaches and methodologies used inside and outside the
company, from test automation to script-based testing, E2E testing, and
exploratory testing. I have experimented with a lot of different test tech-
niques. It is in learning and performing exploratory testing that I found my
testing passion. I’ve now been using exploratory tours for over a year.
Organizing my thinking around the tourist metaphor has substantially
increased the number of fixable bugs that I find in features that I’m respon-
sible for testing.

Although all the tours have been valuable to me at one time or another,
I’ve seen through experience that certain tours work best under specific cir-
cumstances. I will try to share some of my thoughts on when to use them,
and the kinds of bugs that I’ve found while testing the test case manage-
ment solution that I’ve been working on for the last year.

Note that all the bugs I describe here have been fixed and will be
unable to plague any users of our test case management system!

Testing a Test Case Management Solution
I used the exploratory tours with the test case management system that
we’ve been developing for the past year and a half on my team. Before I
describe how I used the tours, I will describe our product because its fea-
tures and design affect the way I chose and executed the tours.

The test case management client works hand in hand with a server,
from which it basically pulls what we call “work items”; things such as test
cases, bugs, and so forth to display for a user to manipulate. Without the
server, the client can basically do nothing. Just by knowing this piece of
information, you can easily tell that tours such as the Rained-Out tour and
the Saboteur yielded a lot of bugs. Imagine canceling a server operation
halfway through its completion, or just getting rid of the server itself. Then
if you think about it a bit deeper, you realize that a work item (or anything
on the server) can be modified at the same time by more than one client. So,
the TOGOF tour yielded a good amount of bugs, as well. Updates are hap-
pening all the time throughout the application, so the FedEx tour is also one
to target.

Complete books on the tours presented in this book could be written.
Until then, here are some of my bug-finding experiences.

86 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

The Rained-Out Tour
When you’re working with a client application that works closely with a
server, you can assume that any unexpected server activity can cause weird
things to happen (both on the server and on the client). Interrupted requests
to a server is tricky business, as is refreshing client-side data. Think about it:
If you open a page that starts loading information from a server, and you
immediately click Refresh, one action is canceled, and a new one starts
immediately. The software on both sides of such a transaction needs to be
on its toes. That’s why this tour finds tons of bugs. A few of my favorites
are (using the exact titles that were entered into our bug management sys-
tem) as follows:

• Bug: If we cancel initial connect to a project, we can no longer
connect to it manually.

Whenever our test case management system is launched, we remember
the previous server (that contains the test case and test data repository)
that the user was connected to and initiate an automatic connection to
this data store. If users want to connect to a different store, they have to
cancel this operation. It turns out that the developers didn’t think
through the cancellation scenario well and caused an environment vari-
able to be deleted under certain circumstances; so when I loaded a new
version of the test data repository, the connection to the server was lost.

• Bug: When deleting a configuration variable and canceling or
confirming, you get prompted again.

This would have been a nasty bug to ship with. It happened whenever I
tried to delete an existing test repository variable and then canceled the
request at a certain UI prompt. Because the Rained-Out tour makes a
tester conscious of recognizing complex and timing-sensitive actions, it
led me to naturally think of this test case.
The Rained-Out tour makes us think beyond explicit actions. There are
times when a feature or a product has to implicitly cancel an action that
has already started (often for performance reasons). This was exactly
the case for this bug.

• Bug: Plan Contents: Moving between suites does not cancel the
loading of tests.

It turns out that whenever we chose a test repository, the application
would start loading the test cases that were associated with it. The tour
led me to think that there had to be an implicit cancel action whenever I
quickly chose a different repository, and if not, there would be perform-
ance issues. It turned out to be true; we were not canceling the action
properly, and performance was really bad.
The Rained-Out tour makes it clear to the tourist: Cancel every action
you can, and cancel it many times and under many different circum-
stances. It is raining, so scream and yell for everyone to cancel their
plans! This strategy led me to bugs like the next one.

Exploratory Testing in Practice 87

www.it-ebooks.info

http://www.it-ebooks.info/

• Bug: Time to refresh starts growing exponentially as we try it several
times.

Knowing that a refresh action will basically cancel any in-progress
activity, I decided to click that Refresh button many times (quickly), and
this actually caused horrible performance issues in the product.
The strategy used to find this next bug was exactly the same one men-
tioned in the previous one.

• Bug: Stress-refreshing test settings manager crashes Camano.

However, the result was much better for a tester’s perspective: a crash!
Clicking the Refresh button like a maniac actually caused the applica-
tion to die.

The Saboteur
The Saboteur forces you to think though the application’s use of resources so
that you can vary the amount of resources available, and thus potentially
find scenarios that will cause it to fail, as discussed here:
• Bug: Camano crashes when trying to view a test configuration when

there is no TFS connection.

TFS is the server used to store test cases and test data. The Saboteur
caused me to think through many scenarios where availability of TFS
was crucial and where good error-handling routines needed to be in
place. Making the server unavailable at the right places sometimes
found serious crashing bugs, and the resulting fixes have made our
product robust with respect to server connection problems.
In this next bug, the strategy was the same one: looking for a resource
that the application uses.

• Bug: Camano crashes at startup time if Camano.config becomes cor-
rupt. Camano continually fails until the config file is corrected.

The resource in this case was a configuration file that the application
uses to persist data between sessions. The Saboteur requires that all such
state-bearing files be tampered with to see whether the application is
robust enough to handle it when those persistent resources are corrupt
or unavailable. Playing around with these persistent files not only
found some high-severity bugs, it was also fun and had me anticipating
when and where the crash would occur. Given that no one else on our
team had thought to try these scenarios made me happy to have the
Saboteur in my tool kit.
This next bug shows the exact same strategy as the previous one but
with a new twist.

• Bug: Camano crashes when config file is really large.

Finding this particular bug consisted of playing around with the config-
uration file and creating variants of it and modifying its properties. The

88 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

Saboteur suggests making it read-only, deleting it, changing its type, and
so forth. But the property that worked for me was its size. When I cre-
ated a very large config file, the application was simply not able to cope
with it.

The FedEx Tour
Our test case management solution processes a great deal of data that flows
freely between the client and the server: bugs, test cases, test plans, test plan
content, and so on. All this information has to be refreshed appropriately to
remain in sync, and this is not easy for an application where multiple
activities work with the same artifacts simultaneously. The FedEx tour is
tailor-made to help a tester think through such scenarios. The following
bugs show some defects that the FedEx tour found.

• Bug: Test plan not refreshing automatically after coming back from a
work item.

The test plan contents show the actual test cases in the test plan. The
strategies that the tour led me to were actually modifying properties on
test cases (and the test plan itself) and ensuring that all these were
refreshed appropriately. It turns out that if we modified the name of a
test case, and came back to view the test plan, you had to manually
refresh the activity for the test case to show the updated name.
We found a number of bugs similar to this next one.

• Bug: When a test plan is selected in the TAC, and we modify one of
its artifacts, Camano crashes.

In this particular scenario, modifying a property (such as configuration
name) of a test plan, while showing that same property on another
activity, would crash the application because it would not be able to
cope with the property change. If you think about it, this bug was
found using the exact same strategy as the previous one: modifying
properties and artifacts, and making sure they were refreshed correctly
somewhere else.
This next one was an interesting bug.

• Bug: Camano will crash forever and ever if we have a test plan that
uses a build that has been deleted.

Our test plans can be bound to builds, meaning that we can link a test
plan to a particular build. However, if we deleted the build that a test
plan was bound to, the application would crash every time we opened
that particular test plan. Here the FedEx tour is helping us identify those
types of data dependencies and guiding us through thinking about
such associations between data elements in a methodical manner.

Exploratory Testing in Practice 89

www.it-ebooks.info

http://www.it-ebooks.info/

The TOGOF Tour
The TOGOF tour will find bugs in applications that can be used by multiple
simultaneous users. We found the following bug while having multiple
users active within the application at the same time.
• Bug: Test Configuration Manager: Camano crashes when you “Assign

to new test plans” if the configuration is not up-to-date.

Test configurations have a Boolean property called “Assign to new test
plans” (which can be toggled on or off). It turns out that if user A and user B
were looking at the same exact copy of any given configuration (with say,
the Boolean property set to true), and user A changed the property to false
(and saved it), whenever user B tried to make any change to the configura-
tion and saved it, his application would just crash. This shows a bug that
would have been very difficult to catch if only one user was testing the
application. The TOGOF tour’s strategy is very clear in these kinds of sce-
narios: Test different instances of the application at the same time to find
bugs that will be difficult to find otherwise.

The Practice of Tours in Windows Mobile Devices
By Shawn Brown

In 2000, Microsoft shipped a product that could fit on a device to be carried
around and perform many of the same functions that a full-size PC could
perform. This device was called the Pocket PC and started a series of
releases of Windows Mobile. Throughout the releases of Windows Mobile,
more and more functionality was added, and therefore the ecosystem to test
became more and more complex: from the first, nonconnected PDA-style
device, to the multiconnected GSM/CDMA, Bluetooth, and WiFi devices
that could stay connected and provide up-to-date information without the
user even having to make a request.

During this evolution, the testing of these devices also had to evolve.
Constraints such as memory, battery life, CPU speed, and bandwidth all
had to be considered when developing and testing for this platform. In
addition, being the first multithreaded handheld device allowed for more
functionality and more applications working together to give the user more
“smart” behavior, and hence the name Smartphone came into the picture.
Now, take that environment and add an additional “unknown” variable
into the picture called ISVs (independent software vendors). ISVs may use
an SDK (software development kit) to create applications on this platform
to expand its capabilities and to a buck or two for themselves through rev-
enue, and may thus cause a new testing challenge. These creative and smart
ISVs may not abide by certain development practices that internal-to-
Microsoft developers are trained to do, or may want to push the boundaries
of what the platform can do, and therefore they may potentially cause
unexpected issues when deploying their applications to the devices. Some

90 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

global measures can be put into place, but as a tester on a Mobile platform
with a fairly extensive SDK, we cannot ignore the potential of one of these
add-ons to affect the overall health of the platform with respect to all the
categories of test. Given the fluidity and the overall challenges of testing
Windows Mobile, this is a great product to hone testing skills on.

During my career with Windows Mobile, I have owned the testing of
Connection Manager, certain Office applications in the earlier releases, and
one of my favorites, the phone functionality.

I catch myself hunting for areas of the product that go unnoticed for
lengths of time and capitalize on their neglect. When I find a flaw in a prod-
uct, it creates a sense of accomplishment and job satisfaction. As my career
in test evolved, I took notice that in addition to being able to discover new
and creative ways to break my product, I was also taking a closer look at
how to prevent bugs from getting into the product and was paying more
attention to the end-to-end solution of the system. Bug prevention starts
with testing the initial design. Roughly 10 percent of all of the bugs found
over the years are spec issues. Looking back, this 10 percent, if they had
made it into the product, could have caused more bugs as well as more time
to complete the project. As you can understand, finding these issues early
helps the product and the schedule.

My Approach/Philosophy to Testing
My philosophy to testing is quite basic. Find the weaknesses of the product
before anyone else does, and ensure the product’s strengths are highly pol-
ished. This approach requires a continual watch on the product and the
environment around it that can affect the performance or functionality.
How can you look at the environment you are positioning yourself to test in
a way that encompasses everyone who is going to interact with it? Then,
how do you prioritize your attack?

Independent of the test problem, I begin by defining the problem state-
ment. What is the desired end goal? I determine the variables. I formulate
an approach (keeping it simple). After a simple solution is defined, I deter-
mine the reusability and agility of the solution. Where are the solution’s
trade-offs and weak points? I have used this approach in developing and
testing hardware as well as software.

One example of my use of this methodology is when I was developing
a shielding technique to enable electronic components to be used in the
bore of an MRI. This violent magnetic environment was never meant to
have metallic objects inside (because of safety and because of the potential
to disrupt the sensitive readings). Knowing the problem statement was
“create a method for housing electronics in the bore of an active MRI unit
without disrupting the readings more than 5%,” I started by gaining a bet-
ter understanding of the environment: the strength of the magnetic field,
the frequency of the gradient shifting when the unit is in active mode, the
method of the readings, and the requirements around what the electronics
inside the bore were expected to do. This information narrowed the solu-
tion to two main options:

Exploratory Testing in Practice 91

www.it-ebooks.info

http://www.it-ebooks.info/

1. Create a shield to prevent the magnetic from penetrating into the hous-
ing of the electronics.
or

2. Create a shield that prevented the RF from escaping from the housing.

After researching the known methods for both, one being a ferrous
metal that would prevent the magnetic fields from entering the box, and the
other, a highly permeable metal to shield the RF from escaping from the
box, I realized that traditional shielding methods would not fit this goal.
(Because the RF that would be generated by either material upon placing
them inside the bore during active mode would most likely degrade the
reading beyond the 5 percent margin.) In addition, the ferrous material
could cause more of a hazard to anyone in the room, given the highly con-
centrated and erratic magnetic field being produced could cause any fer-
rous metal to be hurled through space at a deathly rate. Therefore, one more
option was removed from the equation. Given the material for shielding
could not be a solid plate (because of the RF induced by the environment),
it had to be unconnected loops. After I calculated the penetration of the RF,
the end results were to create a <1cm grid of nonconnecting loops of cop-
per, which would prevent the RF from escaping from the box and would
mostly prevent the RF from entering or being generated by the material
itself. My approach led to the shielding technique being a success, and I
continue to use this process when testing software.

Testing is a continually growing domain, much like any other engineer-
ing discipline. To keep increasing your product’s quality, expose how you
test to your developers/designers. The more they know about how you are
going to test it, the more they will try to create a design that will account for
the methods you will use to exploit the gaps in their design. Testing can be
difficult, because even though you want to maintain the edge on being able
to break any product, you also want to help your developers write better
code. Therefore, you must always be one step ahead of your developers.
As they learn how you test and you learn how they approach solving
algorithm problems, your ability to break their code becomes more and
more difficult, Success! However, it is still your job to find the bugs in the
product.

Interesting Bugs Found Using Tours

Using the Rained-Out Tour
While performing exploratory testing on a previous release of Windows
Mobile, I caught a race condition with “smart dial” functionality. In this
instance, it was known that a side process was being used to do a back-
ground search on the search criteria to aid with performance. The larger the
data set, the longer it takes this process to complete. This turned out to be
an excellent opportunity to use the Rained-Out tour. After loading more than

92 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

4,000 contacts onto the device under test, I entered a search string that was
expected to end in no results. As the side process was churning away in the
background, I changed the search string by deleting one character. The
expected result was to still have no matches, but the side process was not
done with checking the entire data set, and therefore the next filter, which is
designed to check the results of the initial side process, was passed the data
that was not checked yet. This resulted in an incorrect IF statement, and
data that did not match the search clause was displayed incorrectly. If this
bug had not been caught early and through exploratory testing, it could
have caused more downstream design challenges.

Another example of using the Rained-Out tour is in an issue found and
then fixed in the Bluetooth bonding wizard in Windows Mobile. After creat-
ing bonds with a few headsets and peripherals, I proceeded to use the
Rained-Out tour during the connection-request phase. When the listed
peripherals were all disconnected, there was an option to connect one of
them to the phone. I selected one of the BT peripherals and selected the
Connect option. I then noticed a time delay between when the connection
request was made and when the connection or the failure dialog was actu-
ally shown. During this time, I tried all the available menu items. They all
functioned properly during this state. It wasn’t until I moved focus away
from the existing item, then back to the item with the current connection
request, that I noticed that the connection option became available again. So
as a tester using the Rained-Out tour, I selected that option. Doing so keyed
up another connection request to the same peripheral. I performed the same
steps a few more times in quick succession before the initial connection
request completed, and voilà, a sequence of failure dialogs popped up.
Ultimately, the code was able to handle this situation, but there was no need
to be able to continue to make multiple connection requests to the same
peripheral, and therefore the bug was fixed.

Using the Saboteur
A contact list is linked to a number of other functionalities (call history, text
messaging, speed dial, and so on). Knowing this, I used a Saboteur and cre-
ated a list of contacts and some speed-dial entries. Now for the unexpected
situation to be triggered: A sync error was simulated where the contacts on
the device were all removed from one of the linking databases on the
device, but the device still thought they were synced (because they still
existed on the device). Therefore, syncing was seemingly successful, but the
database that housed the links to the speed dial did not exist anymore, and
therefore a blank speed dial was shown.

Using the Supermodel Tour
Here is an example of when I used the Supermodel tour on a Windows
Mobile device and explored UI centering and anchor points using different
resolutions. After booting an image with a resolution that I knew was not
used a lot, I navigated around the device performing simple user tasks (for

Exploratory Testing in Practice 93

www.it-ebooks.info

http://www.it-ebooks.info/

example, creating contacts, checking email, and checking calendar events).
During the calendar event navigation, I noticed that when I selected to
navigate to a specific date, the calendar week view centered itself onscreen.
A number of views could be used, and so I inspected each view. Not until I
got to the month view did I see a centering issue. After I changed which
month to view via the month picker, the repainting of the month that was
selected was centered in the middle of the screen, instead of being top justi-
fied like every other view. This incorrect centering occurred because of a
missing flag in this one view.

Example of the Saboteur
A good time to use the Saboteur is when testing an application that utilizes
data connectivity. Data connectivity is a fickle beast and can come and go
when you least expect it. Using this tour, I was able to find a problem with a
device-side client who requires a connection to provide its functionality.
Not only was this application coupled to connectivity, it also had an impact
on other locations where the user’s entity can be used. I’m speaking of
Instant Messenger, of course. I successfully configured this application and
signed in. Now, knowing my device is a 2.5G device, which means it can
handle only one data pipe at a time, I then called the device from another
phone, thus terminating the active connection, which, on Windows Mobile
on GSM, puts the device connection into a suspended state. Then I signed
in to the same account on my desktop, attempting to fully sever the connec-
tion to that service on the device. Voilà, the device-side client never got the
notification that it was signed in to another location but it also appeared to
be signed out. However, in the menu options, the option to Sign Out was
still available (because it never was told it was signed out).

Another way to be a saboteur is to turn the device’s flight mode on,
which turns off all radios (for when the user goes on an airplane but still
wants to use the device). Many times, applications do not listen to radio
on/off notifications, and this can cause a limbo state to occur. Sure enough,
signing on to IM on the device and then turning off the cellular radio,
which in turn removes all GSM connectivity, was not detected by this appli-
cation, and the application is in a perpetual “connected” state, which is
quite confusing to the user.

Example of the Supermodel Tour
An example of a bug found by using the Supermodel tour coupled with focus
specifically on usability and intuitiveness of designs is as follows. While
traversing through a connected mapping application on Windows Mobile, I
decided to see how easy it was to get directions from my current location to
another location, such as a restaurant. I launched the application, the device
found my current location, and then I decided to select the option to get
Directions from A to B from the menu. In this UI, there was no intuitive way
to select my current location as my starting point. Given that I did not know

94 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

the address where I currently was, I just then decided to enter the point B
location and hit Go. An error appeared stating it needed to know where I
was starting from. Interesting, because upon entering the application, it
made it a point to tell me where I was. This lack of completeness can cause
much pain when using the application, and a simple addition to prepopu-
late this field could be the difference between someone using this applica-
tion all of the time versus it getting slammed in a review on the Web.

Exploratory Testing in Practice 95

The Three-Hour Tour (or Taking the Tours on Tour)
by Shawn Brown
I found a fun way to use the tours to build teamwork and increase morale
and find a lot of great bugs in the process. Given that our product is meant
to travel, we assembled the team and headed off campus on a testing
adventure. We brought our devices, chargers, tools, and tours and drove
around looking for bugs. We set a goal of finding 20 bugs in 3 hours and to
have a lot of fun. The result, we found 25, and no one was ready to return to
the office! Here’s the report.

Applications can function perfectly in a controlled test environment,
but when put in the hands of an end user, coupled with its interactions
with other applications or protocols on a mobile device, is when it gets
interesting; and it is critical to be correct. In the ever-increasing mobile
environment, technology is being put in awkward situations, which makes
end-to-end testing more and more critical. Many years ago, a computer
would sit in a dedicated room and not move around, which made “envi-
ronment” testing not as critical. Yes, you would have to take into considera-
tion changes in bandwidth if connectivity was available, and different
users, but even so, the user segment was more adaptable to this new tech-
nology. As technology grew, it became more interesting, and the more inter-
esting it got, the more it fell into the hands of users who were not prepared,
nor wanted, to understand how it works; they just wanted it to work. As a
technology’s user segment evolves, our testing strategies also have to
evolve to ensure that what is important to the end user is at the forefront of
our minds when we create a test plan. This does not mean that we abandon
the tried-and-true methods and “test buckets”; although we may have to
approach and prioritize how we use these buckets depending on the tech-
nology being tested.

With that said, being mobile and staying connected has become a
necessity in a lot of regions. This new environment variable needs to be
taken into consideration when defining a test strategy or plan. For the sake
of brevity, this discussion focuses on Windows Mobile. Windows Mobile is
composed of many moving parts, and its customers can be anyone from a
teenager in high school to a retired businessperson who wants to keep cur-
rent with news, email, and so on…wherever he/she goes.

www.it-ebooks.info

http://www.it-ebooks.info/

96 Exploratory Software Testing

Knowing that our end users use devices in a variety of ways, a small
set of test engineers set out to accomplish some predefined tasks that
mobile devices can do in the wild. We used multiple tours and uncovered a
number of bugs in a short amount of time. We found the Supermodel tour,
the Saboteur, and the Obsessive-Compulsive tour most useful, although we
could have leveraged just about any tour. The Supermodel tour was prima-
rily used in the mobile platform during this “tour of tours” to flush out
interoperability and integration between applications and tasks. While tak-
ing these tours on tour to accomplish the tasks, each attendee also had their
“attention to detail” radar cranked up. In addition, we paid extra attention
to certain requirements of the device because they have been proven time
and time again to aggravate users when malfunctioning and delight users
when “it just works.” These requirements related to always-on connections,
performance in accomplishing tasks, or navigating (especially via an error
message or a dialog to guide users back on track after something went
wrong).

As we took the tours on tour, we uncovered new bugs that might not
have been found this early in a static testing environment. Using the
Obsessive-Compulsive tour, we discovered that attempting to use every WiFi
hot spot in the area to browse the Web eventually caused IE to unexpect-
edly stop working. This could be due do an authentication error or a proto-
col that has not been accounted for. In addition, this tour also uncovered an
authentication page that IE could not render and therefore could never be
successfully used.

The Saboteur happened to be one of the more fun tours during a team
outing such as this one. As testers, we want to break things, and this notion
of being a saboteur of the device just fits. As we were out in public, there
were many discussion of “what if” this happens or that happens, such as, “I
wonder what will happen if I’m in a call with you, and I attempt to play a
song?” If that functioned properly, the next question would have been this:
“How about we pull the storage card that the song resides on and see what
happens?” This constructive destruction was like a snowball rolling down
a hill picking up speed. In addition to finding a number of new issues in
the product in just three hours, it was a team-building outing that enabled
brainstorming to teach each other new ways of thinking.

During the entire time, the Supermodel tour was at the forefront of our
minds. Each attempted task was put under high scrutiny, and within just a
few hours, a large number of fit and finish bugs were discovered (for exam-
ple, error dialogs that really were not helpful, and messages that could not
be sent because of either network reliability or as a result of our sabotage
[and which were never sent, even after connectivity was reestablished]). In
addition, bugs were found where the input panel covered the edit field,
which can be quite annoying or confusing to the end user.

www.it-ebooks.info

http://www.it-ebooks.info/

The Practice of Tours in Windows Media Player
By Bola Agbonile

I am a graduate of the University of Lagos, Nigeria, where I attained an
MBA (1996) and a Bachelor’s degree in Electrical Engineering (1990). I
presently work on the Windows Experience (WEX) platform with the
Windows Media Player team as a Software Development Engineer in Test
(SDET), a role that I continue to relish daily.

As an SDET, my role is primarily to work with others on my team to
ensure that a high-quality product is what we present to our customers. To
achieve this, one of my key roles as an SDET is to validate that the finished
product satisfies what our target-market customers require and adheres to
the written specifications as outlined by the Program Manager. Another one
of my primary roles is to ensure that the product can withstand rigorous
tests thrown at it.

Windows Media Player
In the Windows Experience division, on the Windows Media Experience
(WMEX) team, I have worked with others at enhancing Windows Media
Player (WMP) from previous versions, with the sole aim being to satisfy our
target market by providing a solid, robust, functional, media player. For
instance, it was with WMP 10 that we first introduced being able to syn-
chronize to devices, and with WMP 11 we took it one step further by adding
greater support for Media Transfer Protocol (MTP) devices, including the
ability to have an automatic sync partnership and allowing for synchroniza-
tion from the device. WMP allows for sync, burn, rip, and playback of
numerous file types, including pictures and DVDs. WMP 12 introduces a
lightweight player mode for quick, easy, and clutter-free playback with
practically no UI chrome.

WMP is an application that is UI-centric. As such, the tours relevant to
this kind of application are the ones I use. To be specific, WMP’s input
sources are via text boxes, check boxes, option buttons, and “shiny discs”
(CDs, DVDs, and CD-R[W]s), while its output is as audio, video, and
dialogs displayed to the user.

Following are the tours that I use for testing WMP 12, with examples
of things that I have encountered along the way that I consider to be
interesting.

The Garbage Collector’s Tour
Garbage collectors are systematic, house to house, driveway to drive-

way. Some testers might, as Chapter 4 suggests, be systematic by testing
features that are close together in an application. I apply it a bit differently
and arrange features in buckets according to their similarity. For WMP, the
first categorization bucket could be “All UI Objects.” The next bucket will
be “Dialogs,” followed by “Text Boxes,” “Boundaries,” and so on. Then, the
garbage collector can begin her systematic collection.

Exploratory Testing in Practice 97

www.it-ebooks.info

http://www.it-ebooks.info/

WMP buckets look something like this:

1. WMP’s Player mode
a. Transport control

1. Shuffle
2. Repeat
3. Stop
4. Back
5. Play
6. Next
7. Mute
8.Volume

b. Buttons
1. Switch to Library mode
2. Switch to Full Screen mode
3. Close WMP
4. Minimize WMP
5. Maximize WMP

c. Seek bar
d. Title bar
e. Right-click context menu

1. Spelling of labels
2. Persistence of user’s choice
3. Navigation using keyboard

f. Hotkey functionality
1. Alt+Enter
2. Ctrl+P
3. Ctrl+H
4. Ctrl+T
5. Ctrl+Shift+C

g. Dialogs
1. Options

Tabs
Options buttons
Check boxes
Text boxes
Command buttons

98 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

2. Enhancements
Next button
Previous button
Hyperlinks
Option buttons
Check boxes
Labels
Hover tooltips
Sliders
Mouse pointer
Drop lists

3. Default language settings
Drop list
Arrow-key navigation
Command buttons

h. List pane
i. Center pane

1. Play all music shuffled
2. Play again
3. Continue playlist
4. Go to Library
5. Play previous playlist

j. External links
1. Windows Help and Support
2. Download visualizations
3. Info Center view

One of the benefits of this tour is that with the categorization of the
application, the tester can systematically walk through and identify features
that might otherwise be overlooked. For example, while taking this tour
and looking WMP over, I came across a bug that I have now logged. The
bug is that in the center pane, “Play previous playlist” does not actually
start playback unlike “Play all music shuffled” and “Play again.” A user
would expect consistent behavior, and if I had not applied the Garbage
Collector’s tour, I would have missed this difference.

The Garbage Collector’s tour made me take a long hard look at WMP and
systematically categorize all the buttons available in the center pane (for
instance) and then test each item’s functionality for consistency when com-
pared with other items in a similar bucket.

Exploratory Testing in Practice 99

www.it-ebooks.info

http://www.it-ebooks.info/

The Supermodel Tour
This tour should be on your list when success is to be measured by the
quantity of bugs found. For example, if there is to be a bug bash, and there
are no restrictions on which feature gets tested, it is beneficial to be one of
the first people on the ground when the whistle blows. Examples of super-
model bugs that I classify as “low-hanging fruit” are typographical errors.
Early on in the product cycle is when this category of bugs is more com-
mon. To effectively spot text bugs, one should read each word and then
count to two before reading the next word. In my opinion, this is the secret
to spotting typos and grammatical errors.

Figure 6.3 is an example of a bug that I found on a WMP dialog. Take a
look at the dialog and see whether you can spot the typo in it.

100 Exploratory Software Testing

FIGURE 6.3 An easy bug to miss.

Spot the bug? It is in the second paragraph. “Do you want to allow the
Web page full to access your….” This should be, “Do you want to allow the
Web page full access to your….” It is easy to read too fast and correct the
sentence in your head while not seeing the error in front of you.

The Intellectual Tour
When running manual tests, it pays to keep asking “What if?” For instance,
when looking at the Player versus Library mode of WMP, one could ask
this: “What if the Library mode is busy and then WMP is expected to be in
the Player mode?”

Having asked this question, one would then investigate possible
answers by performing a task that is exclusively for the Library mode (such
as ripping an audio CD) and then performing a task that is exclusively for
the Player mode (such as DVD playback). The whole purpose of this is to
see whether this scenario has been handled or whether one would get the
undesirable situation of WMP running in both modes (see Figure 6.4).

www.it-ebooks.info

http://www.it-ebooks.info/

Exploratory Testing in Practice 101

FIGURE 6.4 One application running in two different modes.

Twenty-Five Examples of Other WMP-Related “What If?”
Questions
What if a user decides to…

• Burn via Shell and via WMP concurrently?
• Change options from one to another?
• Change view from smaller to larger UI object?
• Delete via WMP a file that is already gone?
• Double-click a UI object?
• Exit from Full Screen mode with ongoing playback?
• Exit WMP with an ongoing process (sync, rip, playback, burn,

transcode, and so on)?
• Insert an audio CD with auto-rip enabled while a context menu is

displayed?
• Place an ampersand (&) in an editable field?
• Play back content over the network, and then disable network con-

nectivity?
• Play back an expired DRM track after moving back the system

clock?
• Play back two DVDs concurrently, one with WMP and one with a

third-party app?
• Play back two DVDs using WMP concurrently from different

ROM drives?
• Press a keyboard key during an ongoing process?
• Read Web Help?
• Repeat a hotkey sequence?

www.it-ebooks.info

http://www.it-ebooks.info/

The Intellectual Tour: Boundary Subtour
This is one of my favorite tours because it makes me feel like a real detec-
tive. The Boundary tour involves conducting tests close to the upper and
lower boundaries, all the while looking for a breaking point. It’s a specific
case of the Intellectual tour that suggests that we ask the software hard
questions.

Classic examples include the following:

• Filling a text box with its maximum number of characters or null
• Creating a very deep folder hierarchy, and then placing a media file in

the last folder and attempting to play back the media file in WMP
• Clicking a button very close to its outer edges to see whether the click

command will still be recognized

For example, in WMP, after I attempted to type characters in a text box
meant for only numbers, the mitigation taken was to ensure that a user can
type in only numbers (see Figure 6.5).

102 Exploratory Software Testing

• Sync content to an already full device?
• Sync/burn/rip content on a PC with no hard drive space?
• Synchronize to two devices concurrently?
• Synchronize/burn/playback, and then hibernate the PC?
• Transcode a file on a laptop using battery power?
• Transcode a file prior to DRM license acquisition?
• Turn off an option, and then verify whether the option is in the off

state?
• Uncheck all the options on a dialog (like Customize Tree View)?
• Use word wheel search, and then drag and drop?

FIGURE 6.5 Mitigation taken to prevent non-numeric inputs.

Conducting more tests on a different tab unearthed a dialog with bad
indentation (see Figure 6.6).

www.it-ebooks.info

http://www.it-ebooks.info/

The bugs found while on the Boundary subtour are varied in nature,
including buffer overruns, bad handling of data, and UI formatting errors.

The Parking Lot Tour and the Practice of Tours in Visual
Studio Team System Test Edition
By Geoff Staneff

In 2004, I came to Microsoft with zero programming experience, but a Ph.D.
in Materials Science from the California Institute of Technology. I spent the
first nine months taking computer science courses and test training in the
mornings while working on the Windows event log in the afternoons. By
the end of the first year, I owned 50k lines of native test code, filed 450
bugs, and had an 80 percent fixed rate. Since moving to Visual Studio, my
focus has changed tremendously. Our work, both the product we test and
the test code we write, contains predominantly managed code, and most of
our regular testing is manual or semi-automated. Although the particulars
of the day-to-day work are vastly different, the act of testing is the same. I
keep a lab book at my desk to track identified and reproduced defects and
to note interesting areas of investigation that bear future attention.

Tours in Sprints
Our development and test teams work closely during each sprint. It is stan-
dard practice for the test team to build new bits between check-ins from our
developers and participate in code reviews for the same. As such, we have
some uncommon advantages in knowing where certain kinds of defects are
likely to be found. Instead of jumping right into these known risk areas, I
take a more methodical approach ingrained by my years of studying exper-
imental science. The first thing I do with a new application (or version) is
take a brief Parking Lot tour to get the lay of the land. As I learn how the var-
ious parts of the application are supposed to work together, I take notes on
which areas deserve in-depth attention and follow-on tours. The next wave
of tours focuses on individual features, typically with an imposed bias such
as accessibility, expose all error dialogs, or force all default values (permuta-
tions pulled straight out of How to Break Software and summarized in
Chapter 3, “Exploratory Testing in the Small,” of this book).

Exploratory Testing in Practice 103

FIGURE 6.6 Dialog with bad text indentation.

www.it-ebooks.info

http://www.it-ebooks.info/

Between the Parking Lot tour and the Breaking Software tour, I generally
pick most of the “low-hanging” fruit in terms of obvious bugs.

My final wave of tours is a much more targeted endeavor. After a couple
days observing how the product under test responds, it is time to go for
more abusive tours that challenge the assumptions of implementation.
The ones I end up using the most are the Back Alley tour and the Obsessive-
Compulsive tour, built on previously observed reactions in the product (obser-
vations or behavior that were technically correct, but perhaps incomplete or
narrow) or conversations with the developer about his implementation.

Over the course of two such tight sprints, I identified about 75 defects
in each, of which all but 5 were fixed before the end of the week in which
they were identified. We were working in what we call “low-overhead
mode,” such that if development could address the issue before the end of
the week, test would not formally log the bug. This arrangement was great
from both sides of the dev-test relationship; product quality was quickly
improved, and no one had to deal with bug-reporting and -documenting
overhead. Had the turnaround on bugs been days rather than hours, this
arrangement would not have been appropriate, because details of the
observed bug could have been lost.

Keeping the pace brisk was facilitated by a cut time each day when a
new build would be produced and tested. This had a dual impact. First,
development would communicate the fixes we should expect prior to the cut
time each day, focusing the testing effort to newly implemented or repaired
features. Second, the regular testing start time provided regular feedback to
development about the state of their progress. Developers were eager to get
their fixes into the next day’s testing effort, causing them to work with test to
ensure they’d make the test deadline each day, which helped keep the fea-
tures to spec with limited creep. We maintained a very high rate of code
churn and a tight loop of checking in and testing, which allowed us to stay
on top of defects and find the important ones early. Testing during these
sprints lent itself to exploratory tours, as the testing cycle was iterative and
short. Returning to a general tour such as the Money tour or the Guidebook
tour every few days helped ensure that we didn’t let any new work slip
through undetected. I do not recall any new bugs in those features over the
last four months, despite regular use by our team and others.

Reviewing the bugs identified over one of these testing efforts shows a
breakdown by detecting tour:

• 9% Taxicab tour (keyboard, mouse, and so on)
• 9% Garbage Collector’s tour (checking resources after releasing/

removing them)
• 15% Back Alley tour (attempting known bad actions, such as closing a

dialog twice)
• 18% Obsessive-Compulsive tour

• 19% Landmark tour

• 30% Supermodel tour

104 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

While most of the Supermodel tour defects were not recall class, nearly
all the Back Alley and Garbage Collector’s tours would have forced a recall or
patch on a released product. Although the Supermodel tours didn’t directly
reveal the more severe issues, they did identify places where more-focused
tours could follow up and deal real damage. One such example was the
identification of keyboard acceleration for the Cancel button in a wizard.
This observation identified a bug immediately. Wizards do not typically
accelerate the Cancel button with a lowercase L; instead, they usually
reserve the Esc key for that, without any visual indicator. A follow-up Back
Alley tour exploited this keyboard acceleration to cancel the wizard several
times. This exposed an unhandled exception and a UI timing issue where a
modal dialog was hidden behind the UI element waiting on it. Of course,
canceling the same wizard instance more than once should also have not
been possible.

Whenever I revisit a feature we’ve previously tested, I run another
Parking Lot tour. Just recently, using this method I observed two defects in
functionality that had been verified not two weeks earlier. Even when I
wasn’t planning to test this particular part of the feature, just by revisiting
the bounds of the code under test, a broken link and an unhandled excep-
tion presented themselves for observation. Following a strict script and just
getting in and getting your work done as efficiently as possible would have
missed these opportunities, leading to increased mean time to detection for
new defects in the system.

Parking Lot Tour
The Parking Lot tour was born of countless family vacations, where dis-
tances on the map didn’t look nearly as imposing as they did after driving
from place to place. Such ambitious plans often saw the family arrive at a
venue after closing time, leaving nothing to do but tour the parking lot and
try to make the next stop before it too closed. I used a Parking Lot tour to
find a usability bug and an app crash during my interview for my current
team:

• Primary objective: Identify the entry points for all features and points
of interest within the scope of testing.

• Secondary objective: Identify areas where specific tours will be helpful.
• Targets of opportunity: Enumerate any show-stopping bugs on the first

pass.

In a way, the Parking Lot tour is like a mixture of a Landmark tour and a
Supermodel tour. The first pass isn’t going to look too deep and is really more
interested in how the code under test presents itself than anything the code
under test does.

Exploratory Testing in Practice 105

www.it-ebooks.info

http://www.it-ebooks.info/

Test Planning and Managing with Tours
By Geoff Staneff

When testers express an interest in exploratory testing, this can often be
interpreted by their managers as a rejection of rigor or planning. Through
the use of the touring metaphor, managers can gain repeatability and an
understanding of what has been tested, while testers can maintain their
autonomy and exploratory imitative. This section outlines some of the
strategies and techniques that will prove useful when managing a tour-
driven test process.

Defining the Landscape
Two concerns frequently arise when discussing exploratory testing from the
standpoint of the person who isn’t using it right now in his own work. First,
there are concerns about what will be tested. How can we know what we’ve
covered and what we’ve not covered when the testers decide where and
how to test while they are sitting with the application under test? Second,
there are concerns about the transferability of that knowledge. What hap-
pens when the exploratory tester becomes unavailable for further testing
efforts on this feature or product? Both of these concerns can be addressed
through the utilization of testing tours.

What is a testing tour but a description of what and how to test? By tak-
ing a well-defined tour, for instance the Supermodel tour, and pointing your
defect observer (the tester) at a particular feature or product, you can know
that a test pass has been scheduled to review said feature or product to sur-
vey the state of fit and finish class defects. Although the tester may, under
his or her own initiative, find other kinds of defects, the entire testing act
has been biased to detect those defects that make the product look bad.

Where heavily scripted testing may specify precisely which defects to
confirm or deny the existence of in a given product, the tour specifies a
class of behavior or defect and leaves it to the tester to determine the best
route to confirming or denying the existence. This leaves management free
to set the testing strategy, without impairing the tester’s ability to choose
tactics suitable to the feature or session of exploration.

The second question is perhaps a more difficult question for test as a
discipline and not just exploratory testing. As testers gain experience, they
improve their understanding of software systems, how they are typically
constructed, and how they typically fail. This has the advantage of making
experienced testers more efficient at finding typical software defects, or
even defects typical of a given piece of software through the various stages
of development, but this increased value makes the temporary or perma-
nent loss all the more damaging to the overall test process. Testers will
become unavailable throughout the course of development: They can take
time off, be transferred to another project or team, change their role within
the organization, leave the company entirely, or any number of other things

106 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

may arise that conspire to deprive your test effort of its most experienced
testers. This is where touring really shines, because it defines what and how,
such that any rational agent should be able to perform a similar tour and
detect similar defects. Tours will not help testers detect subtle changes in
typesetting, but tours can inform a tester that they ought to be concentrat-
ing on that sort of defect as they traverse the features they’ve been assigned.

A successful tour is one that intentionally reveals a particular class of
defect, providing enough detail to bias the detection, but not so much as to
narrow the focus too tightly either in feature scope or defect class. As such,
it becomes even more important to record side trips and ancillary tours that
were spawned by the scheduled tour. It should not be uncommon for your
testers to pass up bug-finding opportunities but note them for further study
when they can dedicate their focus to this unplanned area of interest.
Touring, therefore, instills some discipline on the testing process. No matter
if you choose to take the side trip now and resume the tour later, or mark
the POI on your map and return after your tour, by making the distinction
between on- and off-tour, one can come along later and understand which
combination of tours should reveal all the defects observed. It is at this
point when a decision can be made to either expand the set of regularly
scheduled tours, or to run with the normal set and track whether these side-
trip opportunities present themselves to other testers in the future.

Expanding the set may be helpful if you have a wide product and need
to split work between new resources. By expanding the set, one is with-
holding some of the decision-making process from those doing the testing,
but this can be critically important to avoid overlap and redundancy in a
testing effort.

Tracking the recurrence of side trips in the future makes sense if you
will have several opportunities to test different versions of the same appli-
cation or same kind of application. In the event that a specific side trip does
not present itself, it can be assigned as a special tour just to ensure that
there really were not any such significant defects present in this testing
effort. The subsequent sections walk through the use of tools through vari-
ous points of an application development life cycle.

Planning with Tours
Before setting foot in a new city, prepared travelers will have acquired some
basic information about their destination. It’s good to know such things as
what language is spoken there, if they will accept your currency, and
whether they treat foreigners kindly, before you find yourself in unfamiliar
surroundings with no plan in place to mitigate the challenges you’ll
encounter. This might mean taking one of the survey tours (Landmark or
Parking Lot) yourself to get an overview of the key features you’ll be
expected to report on throughout the development and maintenance of the

Exploratory Testing in Practice 107

www.it-ebooks.info

http://www.it-ebooks.info/

application. At the end of the cycle, you’ll want to be able to report any
show-stopper defects as well as how wide the happy path for users actually
is through your application. This means providing tours aimed at covering
well the core scenarios and providing opportunistic tours with great
breadth across the application to pick up abnormalities in out-of-the-way
corners of the application.

Many tours fit into the start or end of a development cycle naturally. A
tour capable of detecting improper implementation of controls, such as a
Taxicab tour, should come earlier than one focused on fit and finish, such as
the Supermodel tour. Although the individual testers needn’t have any privi-
leged information about the data or class structure of the application under
test, they are still capable of revealing defects that are sensitive to these
structures. It is therefore important to find systematic errors early, such as
misuse of a classes or controls, before the application has had a chance to
solidify around this peculiar behavior and fixing the defect becomes too
risky, or time-consuming, or the repercussions of the change too poorly
understood to undertake a fix.

Early-cycle objectives include the following:

• Find design defects early.
• Find misuse of controls.
• Find misuse of UI/usability.

These objectives lend themselves to tours of intent: those explorations
that focus on getting something done rather than doing that thing in any
particular way. Tours of intent include the Landmark tour and the Taxicab
tour. At the start of the cycle, a testing effort will usually attempt to identify
big problems.

Late-cycle objectives include the following:

• Ensure public functions function.
• Ensure user data is secure.
• Ensure fit and finish is up to expectation.
• Characterize the width of the functional feature path.
• Confirm previous defects are not observable.

These objectives lend themselves to tours of specifics: those explorations
that focus on a particular something in a particular way. Tours of specifics
include the Back Alley tour, Garbage Collector’s tour, Supermodel tour, and
Rained-Out tour.

Permutations on tours should be intentional and planned ahead of
time. Thinking about taking a Landmark tour, but only using the mouse to
navigate your application? Make that decision up front.

At the end of the day, one must still plan and martial testing resources
effectively from the start to secure the opportunity to succeed for one’s
team, regardless of the testing techniques employed. Often, realizing that a

108 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

delay exists between development and test, test will undertake a testing
effort over parts of the application in isolation rather than biting off an
incomplete end-to-end scenario. Even when the application is nearly com-
plete, when it is handed over to test as a full unit, it makes sense to begin
with the early-cycle tours because they help identify opportunities for more
in-depth tours and allocation of testing resources.

Letting the Tours Run
While exploration and permutation are important parts of the exploratory
testing process, it is important that the tour and the tour guide stay on tar-
get for the duration of the tour. Staying on target means sticking within the
intent of the tour. For example, if your current tour is scheduled to hit N
major features, make sure you cover those N major features. This advice
applies not just to the tester, but also to the test manager: Letting the
planned tour run is important to identify the various side trips and follow-
up tours that will help guide the next iteration of testing. Tours are meant to
be repeated, by different testers, with different permutations in focus.

Because each tour is meant to be short, comprising a session of a few
hours, there isn’t much to gain from interrupting the tour. There is, how-
ever, much to lose from interrupting a tour in the way of knowing what you
were looking for during that session. Testers will find bugs in products.
This is not a surprise and isn’t anything out of the ordinary. Figuring out
how and why they found that bug might be something to talk about. With a
guided tour, you have a framework under which another tester may be able
to find similar defects. This is special and should be leveraged in subse-
quent tour assignments. When testers go off-tour, for whatever reason, they
may find defects, but we already expect them to find defects on the tour
they were experiencing. By leaving the tour, they will have lost the focus
and observational bias granted by that tour, which makes scheduling a sen-
sible follow-up tour much more difficult. A tester who chases down a prom-
ising side trip of “good bugs” might not get through the balance of the tour,
leaving an even larger risk area in a completely unknown state. Without the
confidence to come back to an area despite knowing bugs are ready to be
found right now, you’ll put yourself in a state of not knowing what you
don’t know at the end of the tour.

Analysis of Tour Results
Because tours impart a bias to the observer (for example, the tester is inter-
ested in specific kinds of observations with respect to the features compris-
ing the tour), it provides great information about both the toured portion of
the software and the need for additional tours through those parts of the

Exploratory Testing in Practice 109

www.it-ebooks.info

http://www.it-ebooks.info/

software. Touring testers will report both opportunities for side trips and
defects that were strictly “off-tour” but prominent enough to stand out
despite the testing focus elsewhere. This provides several opportunities to
involve the testers, helping them to take ownership in the entire process.
The opportunities for side trips are clear and can lead directly to specific in-
depth tours or additional broad tours in this previously missed feature area.
Reports of bugs that reside outside the focus of the tour are indicators that a
tour similar to the last but with a focus more attuned to the unexpected bug
detected should be performed.

Finally, when multiple testers have taken the same tour, some overlap
will occur as to the bugs they report. Because the tour is providing a bias to
the act of bug detection, the overlap, or lack thereof, should provide some
insight into how many of those kinds of bug remain undetected in the prod-
uct—or if further tours in this area should be scheduled until such time as
the reported bugs from different tourists converge. Assigning multiple
testers to the same tour is not actually a waste of resources (in contrast to
assigning multiple testers to the same scripted test case, which is a waste of
resources). Because the tour leaves many of the tactical decisions of test to
the individual, variation will exist between testers despite the similarity in
the testing they have performed. Although this might run counter to the
claim that a tour will improve reproducibility in a test pass across testers
and time, so long as the tour reveals a particular kind of defect with great
regularity it is not incompatible with the discovery of different bugs (for
example, a variety of manifestations will point back to the same root cause
of failure).

Making the Call: Milestone/Release
When the time comes to report on product quality, a tour-based testing
effort will be able to report on what works in the product and how well it
works. A tour-based testing effort will be able to report on what fraction of
the planned work actually works, in addition to how wide the path to each
working feature actually is. From a high level, test will be able to report
how likely additional bugs will exist in given features, remaining to be dis-
covered. Likewise, they will be able to report how unlikely certain types of
defects will occur along the tour paths taken during testing. While the num-
ber of bugs detected per hour might not differ from other testing methods,
the tour-based effort should be able to prioritize which types of bugs to find
first, and thus provide early detection of assumed risks.

In Practice
Your circumstances may dictate much of your strategy for breaking down
work and running a tour-based testing effort. Some test teams may be
involved during the feature design stages and provide input on usability

110 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

and testability of features before they are implemented, or your team might
have no direct contact with the developers, only interacting with “com-
plete” projects thrown over the wall in your general direction.

No matter what deadline you are under, you will want to start with a
wider or overview tour to help identify where opportunities for in-depth
exploration reside and specific tours to schedule. The feedback loop
between these first explorations and the second wave is the most critical, as
this is where you will begin to identify the overall allocation of testing
resource to the product you have in front of you. Therefore, it is important
to have great discipline early in sticking to the tour and identifying places
to return with subsequent investigations. First, map the space for which
you are responsible, and then go about focusing on particular points of
interest or hot spots of trouble.

Conclusion
The touring concepts applied at Microsoft have helped software testers to
better organize their approach to manual testing and to be more consistent,
prescriptive, and purposeful. All the testers involved in these and other
case studies have found the metaphor useful and an excellent way to docu-
ment and communicate test techniques. They are now focused less on indi-
vidual test cases and more on the higher-level concepts of test design and
technique.

Exercises

1. Pick any bug described in this chapter and name a tour that would find
it. Is there a tour, other than the one cited by the author in this chapter,
that would also find the bug?

2. Pick any two bugs in this chapter at random and compare and contrast
the bugs. Which one is more important in your mind? Base your argu-
ment on how you think the bug would impact a user who stumbles
across it.

3. The Supermodel tour has been cited as a good tour for UI testing. Can
you describe a way in which this tour might be used to test an API or
other such software that has little or no visible UI?

Exploratory Testing in Practice 111

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7
Touring and Testing’s Primary Pain Points

“One man’s crappy software is another man’s full time job.”
—Jessica Gaston

The Five Pain Points of Software Testing
Never in the history of mankind has society depended so completely on a
product that is often so deeply flawed. Not only does software control our
systems of government, law enforcement, banking, defense, communica-
tion, transportation, and energy, but it also holds the key to the computa-
tionally intensive solutions that will one day remake this planet. How will
we tame our economic markets, achieve clean energy, or control our chang-
ing climate without the computing power of software? Beyond the innova-
tive spirit of the human mind, is there a single tool that is more important
to the future of mankind than software?

Yet software, more than any other product in history, is famous for its
ability to fail. Newsreels overflow with stories of stranded ships, region-
wide power failures, malfunctioning medical devices, exploding spacecraft,
financial loss, and even human death. Minor inconveniences are so com-
monplace that it is a joke at Microsoft that employees act as the help desk
for all their nontechnical friends and family. Computers and the software
that makes them do useful things are a wonder, but their complexity is too
much for the way we develop software today.

It is testing that the industry relies on as the check-and-balance between
innovation and dependability. The complex nature of software develop-
ment and the fallibility of the humans who write code combine to virtually
guarantee the introduction of errors. But as a process to manage and mini-
mize these errors, testing has some serious drawbacks. The five most con-
cerning pain points are the subject of this chapter, and we must solve these
issues to have any hope that software of the future will be any better than
the software of today.

www.it-ebooks.info

http://www.it-ebooks.info/

This chapter comes last, after the tours have been thoroughly discussed,
to lead the reader into using the tours to relieve these pain points. The five
pain points are as follows:

• Aimlessness
• Repetitiveness
• Transiency
• Monotony
• Memorylessness

Each is discussed in order next.

Aimlessness
Much has been written about the evils of a life without purpose, but it is
tests without purpose and the aimlessness of much of our modern testing
practice that are creating a major testing pain point. Testing is not simply
something that we can just go do. It requires planning, preparation, strategy,
and adaptable tactics for it to be performed successfully. But far too many
software organizations ignore proper preparation in favor of just doing it.
Testing is too important to treat it so casually.

When I was a professor at Florida Tech, I taught software testing, and
one semester my class was much too large for my liking. I decided to run an
experiment that would scare off a few of the less-serious students. On the
first day, I convened the class in a computer lab and instructed the students
to identify an application to test and work in pairs to test it. I gave them no
further instruction on how to carry out such testing, but as an incentive, I
told them that if they impressed me with their technique, they could stay in
the class. If they did not, I would see that they were automatically dropped
(not something I intended to do, but the threat was sufficient for my pur-
pose).

I prowled the lab, which had the effect of increasing the tension in the
room, and occasionally stopped a pair of students and demanded to know
how they intended to find a bug. Each time I rendered such questioning, I
got some variation of “not sure, doc, we’re just hoping it fails.” Finally,
some astute student would realize that those answers weren’t working and
get a bit closer to something that indicated strategy. In fact, I remember the
exact statement that caused me to admit the first pair of students and send
them on their way: “We’re going through all the text boxes entering long
strings, hoping to find a place where they are not checking string length.1”

Bingo! Perhaps this is not the best or most important strategy, but it is a
strategy, and as such it helps counter aimlessness. Software testers are far
too often without strategy and specific goals as they are running tests.

114 Exploratory Software Testing

1 They found one, too. See attack 4 on page 35 of How to Break Software.

www.it-ebooks.info

http://www.it-ebooks.info/

Touring and Testing’s Primary Pain Points 115

When testing manually, they wander the app in an ad hoc manner. And
when writing automation it is simply because they know how to write it;
whether the automation will find worthwhile bugs, will stand the test of
time, and be worth the cost of maintenance isn’t part of the picture.

This aimless nature of software testing must stop. How often will test
managers provide the meaningless advice of just go and test it before we cre-
ate a better way? Stop this aimless process now one team a time.

I know, it’s easier said than done. After all, there are an infinite number
of tests possible for even the simplest of applications. But I argue that there
are a finite number of testing goals.

Define What Needs to Be Tested
Software testing usually occurs by partitioning an application into sections
based on a component (defined by structural boundaries like code files and
assemblies) or feature (specific functionality of a component) basis and
assigning individual testers or teams of testers to a component or feature.
Many companies I have worked with have feature teams or even assign sep-
arate test leads to each large component.

But such a partitioning does not really support good testing practice.
Users don’t care about components and features, and if we want to find
bugs that real users are likely to stumble upon, we will benefit by following
their lead. Users care about capabilities and use various components and fea-
tures to exercise a desired capability. If we test according to capabilities, we
can more closely align our testing to real-world usage.

For example, I can choose a set of capabilities to test as an ensemble or
focus on a single one. I can purposefully explore the capabilities across a
number of features or stick to the capabilities of a single feature. I can exer-
cise capabilities that cross component boundaries or choose to stay within a
component. I can rely on architecture documentation or written specs to
build a component/feature/capability map to guide my testing and ensure
that I cover the interesting combinations to the extent possible. Focusing on
more fine-grained capabilities rather than higher-level notions of compo-
nents and features puts me in a position to better understand what needs to
be tested. To test a feature, I must exercise its capabilities in varying degree
and order. By explicitly calling out the capabilities, I make this job more
purposeful and can more easily account for progress and coverage.

Determine When to Test
The idea of decomposing features into capabilities can help organize a test
team to focus on testing real-world concerns of users. In the best case, man-
ual testers should be free to find subtle but important bugs by forcing an
application to perform tasks it might be faced with when in the hands of a
real user. However, the extent to which this is possible requires that prior
testing must be effective at reducing the overall level of “bug noise.”

www.it-ebooks.info

http://www.it-ebooks.info/

Bug noise is what I call the niggling bugs and issues that keep testers
from being productive. If all testers are doing is finding technical issues like
an input field allowing characters when it should only allow numbers or
constantly finding the same bug over and over again, productivity will fall.
In the best case, all of these issues have already been found by prior devel-
oper testing, unit test, code reviews, and so forth. If not, a great deal of
effort in manual testing will be spent finding them, and that means fewer
cycles to run more tours and find more subtle but probably more impactful
issues.

This means that over time it is important to understand how the bug-
finding efforts in each testing phase matches the actual bugs being found.
At Microsoft, this is part of the bug triage process: For every bug found,
explicitly determine when the bug should have been caught. That way we can
learn how to focus review effort, unit testing effort, and so forth based on
historical bug data. It takes a few project cycles to perfect this process, but it
pays off in the long run.

Determine How to Test
As the prior point was focused on the testing phase, this point is about test-
ing type, meaning specifically manual versus automated testing. In Chapter
2, “The Case for Manual Testing,” I spent a great deal of effort describing
the differences between the two, and I will not rehash that here. However,
within manual testing, it is also useful to classify how certain bugs were
found. Was it ad hoc testing, scripted, or exploratory? Was a specific tour
responsible for guiding the tester to the bug in question? If so, document
this.

Teams that take care to match technique to bug have gone a long way
toward answering the question how. Ultimately, a collective wisdom of sorts
will emerge in the group in that certain bug types will be linked with cer-
tain tours or techniques, and testers will know that “this function/feature is
best tested this way.”

This is where the tours come in. Tours are a way to identify higher-level
test techniques and over time understand the relationship between tours
and features they are good at testing and bugs they are likely to find. As
teams establish a base set of simple and advanced tours, they will have the
link between feature type and bugs that they can use to make testing far
less aimless than before.

Repetitiveness
We test and then we test some more. As our application grows in features,
we run old tests on the existing features and new tests on the new ones. As
the product grows over its life cycle, however, the new tests soon become
old ones, and all of them eventually become stale.

116 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

Even stale tests have their role to play. As bugs are fixed, features and
functionality must be retested, and existing test cases are seen as the least
expensive way to retest the application. Indeed, it is foolish to waste any
test case, and the idea of disposable test assets is a repugnant one for busy
and overworked testers. The industry has found test case reuse such a use-
ful paradigm that we’ve given the activity special names such as regression
tests or even regression suites (to make them sound more thorough?) to high-
light their role and purpose. For an application of any size and longevity,
regression test cases can sometimes number in the millions.

Let’s put aside the problem of maintaining such large test suites and
focus on the repetition problem. Treading over already well-worn paths and
data/environment combinations has only limited utility. It can be useful to
verify a bug fix, but not to find new bugs or to test for potential side effects
of a code change, and they are of no use whatsoever in testing new or sub-
stantially modified features. Worse still is the fact that many testers and
developers put unwarranted faith in such tests, particularly when they are
large in number. Running a million test cases sounds nice at face value (at
least to managers and vice presidents), but it is what’s in those test cases
that really matters. Is it good news or bad news that a million plus mem-
bers of a regression suite have executed clean? Are there really no bugs, or
is the regression suite just incapable of finding the bugs that remain? To
understand the difference, we must have a firmer grasp on what testing has
already occurred and how our present and future testing will add to the
whole.

Know What Testing Has Already Occurred
When a regression suite executes clean, we can’t be sure whether this is
good news or bad news. Boris Beizer called this phenomenon the pesticide
paradox, and I can frame it no better than he did. If you spray a field of
crops with the same pesticide, you will kill a large number of critters, but
those that remain are likely to develop strong resistance to the poison.
Regression suites and reused test cases are no different. Once a suite of tests
finds its prescribed lot of bugs, those bugs that remain will be immune to its
future effects. This is the paradox: The more poison you apply, a smaller
percentage of bugs are killed over time.

Farmers need to know what pesticide formula they are using and
understand that over time its value decreases. Testers must know what test-
ing has already occurred and understand that reusing the same tired tech-
niques will be of little bug-finding value. This calls for intelligent variation
of testing goals and concerns.

Understand When to Inject Variation
Solving the pesticide paradox means that farmers must tinker with their
pesticide formula, and for testers it requires injection of variation into test

Touring and Testing’s Primary Pain Points 117

www.it-ebooks.info

http://www.it-ebooks.info/

cases. That is a bigger subject than this book covers, but an important part
of it is woven throughout the whole tours concept. By establishing clear
goal-oriented testing techniques and understanding what types of bugs are
found using those techniques, testers can pick and choose techniques that
better suit their purpose. They can also vary the techniques, combine the
techniques, and apply them in different orders and in different ways.
Variation of testing focus is the key, and the methodology in this book pro-
vides the tools to achieve a consistent application of effective and ever-
changing “pesticide.”

Of course, simply changing the formula is a process that can be
improved, too. Farmers know that if they match the right pesticide for their
specific crop and the bugs they expect to combat, they achieve even more
success. Your scenarios and tours are your pesticide and inject variation in
the scenarios, as described in Chapter 5, “ Hybrid Exploratory Testing
Techniques,” and using the tours in a variety of orders and with varying
data and environments can help ensure that the ever-changing formula is
one that potential bugs will never get used to.

Real pesticides have labels that show what crops they are safe for and
what critters they target. Can we say the same about our tests? Not yet, but
pesticide makers got where they are only by a lot of trial and error and by
learning from all those trials. Software testers can and should do a lot of the
same.

Transiency
Two communities regularly find bugs: the testers who are paid to find
them, and the users who stumble upon them quite by accident. Clearly, the
users aren’t doing so on purpose, but through the normal course of using
the software to get work (or entertainment, socializing, and so forth) done,
failures occur. Often, it is the magic combination of an application interact-
ing with real user data on a real user’s computing environment that causes
software to fail. Isn’t it obvious then that testers should endeavor to create
such data and environmental conditions in the test lab to find these bugs
before the software ships?

Actually, the test community has been diligently attempting to do just
that for decades. I call this process bringing the user into the test lab, either in
body or in spirit. Indeed, my own Ph.D. dissertation was on the topic of
statistical usage testing, and I was nowhere near the first person to think of
the idea, as my multipage bibliography will attest. However, there is a natu-
ral limit to the success of such efforts. Testers simply cannot be users or sim-
ulate their actions in a realistic enough way to find all the important bugs.
Unless you actually live in the software, you will miss important issues. And
most testers do not live in their software; they are transients, and once the
application is shipped, they move on to the next one.

118 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

It’s like homeownership. It doesn’t matter how well the house is built.
It doesn’t matter how diligent the builder and the subcontractors are during
the construction process. The house can be thoroughly inspected during
every phase of construction by the contractor, the homeowner, and the state
building inspector. There are just some problems that will be found only
after the house is occupied for some period of time. It needs to be used,
dined in, slept in, showered in, cooked in, partied in, relaxed in, and all the
other things homeowners do in their houses. It’s not until the teenager
takes an hour-long shower while the sprinklers are running that the septic
system is found deficient. It’s not until a car is parked in the garage
overnight that we find out the rebar was left out of the concrete slab. And
time matters, as well. It takes a few months of blowing light bulbs at the
rate of one every other week to discover the glitch in the wiring, and a year
has to pass before the nailheads begin protruding from the drywall. How
can a home builder or inspector hope to find such issues?

These are some number of bugs that simply cannot be found until the
house is lived in, and software is no different. It needs to be in the hands of
real users doing real work with real data in real environments. Those bugs
are as inaccessible to testers as nail pops and missing rebar are to home
builders.

The tours and other exploratory constructs in this book are of limited
value in fighting transience. Getting users involved in testing will help, get-
ting testers involved with users so that they can create tours that mimic
their actions will help, too. But at the end of the day, testers are transients.
We can do what we can do and nothing more. It’s good to understand our
limitations and plan for the inevitable “punch lists” from our users.
Pretending that when an application is released the project is over is simply
wrong headed. There is a warranty period that we are overlooking, and that
period is still part of the testing phase. I approach this topic in the next
chapter, which explores the future of testing.

Monotony
Testing is boring. Don’t pretend for a moment that you’ve never heard a
developer, designer, architect, or other nonquality-assurance-oriented role
express that sentiment. In fact, few QA people I know wouldn’t at least
agree that many aspects of what they do day in and day out are, if not bor-
ing, monotonous and uncreative.

As exhilarating as the hunt for bugs is early in one’s career, for many it
gets monotonous over time. I see this period of focusing exclusively on the
hunt as a rite of passage, an important trial by fire that helps immerse a new
tester in testing culture, technique, and mindset. However, if I had to do it
for too long as the main focus of my day, I’d go bonkers. This monotony is
the reason that many testers leave the discipline for what they see as the
more creative pastures of design and development.

Touring and Testing’s Primary Pain Points 119

www.it-ebooks.info

http://www.it-ebooks.info/

This is shortsighted because testing is full of interesting strategic prob-
lems that can entertain and challenge: deciding what to test and how to
combine multiple features and environmental consideration in a single test;
coming up with higher-level test techniques and concepts and understand-
ing how a set of tests fits into an overall testing strategy. All of these are
interesting, strategic problems that often get overlooked in the rush to test
and test some more. The tactical part of testing, actually running test cases
and logging bugs, is the least interesting part, yet it is the main focus of
most testers’ day, week, month, and career.

Smart test managers and test directors need to recognize this and
ensure that every tester splits their time between strategy and tactics. Take
the tedious and repetitive parts of the testing process and automate them.
Tool development is a major creative task at Microsoft, and is well
rewarded by the corporate culture.

For the hard parts of the testing process, such as deciding what to test
and determining test completeness, user scenarios, and so forth, we have
another creative and interesting task. Testers who spend time categorizing
tests and developing strategy (the interesting part) are more focused on bet-
ter testing and thus spend less time running tests (the boring part).

Testing remains an immature science. A thinking person can make a lot
of insights without inordinate effort. By ensuring that testers make time to
step back from their testing effort and find insights that will improve their
testing, teams will benefit. Not only are such insights liable to improve the
overall quality of the test, but the creative time will improve the morale of
the testers involved.

This book addresses this need for creativity using tours as a higher-level
representation of test cases. The act of recognizing, documenting, sharing,
and perfecting a tours-based approach to testing has been widely cited at
Microsoft as a productive, creative, and fun way to do more effective
testing.

Memorylessness
I have a habit of doing paired testing at Microsoft, where I sit with another
tester and we test an application together. I vividly recall one such session
with a tester who had a good reputation among his peers and was idolized
by his manager for his prolific bug finding.2 Here’s how the conversation
went in preparation for the paired testing session:

ME: “Okay, we just installed the new build. It has some new code and
some bug fixes, so there is a lot to do. Can you give me the rundown
on what testing you did on the prior builds so that we can decide
where to start?”

120 Exploratory Software Testing

2 See my blog entry for “measuring testers” in Appendix C, “An Annotated Transcript of JW’s
Microsoft Blog,” to see what I think of counting bugs as a way to measure a tester’s value.

www.it-ebooks.info

http://www.it-ebooks.info/

HIM: “Well, I ran a bunch of test cases and logged a bunch of bugs.”
ME: “Okay, but what parts did you test? I’d like to start off by testing
some places you haven’t covered a great deal.”

And from this I got a blank stare. He was doing a lot of testing, but his
memory of where he had been, what he had tested, and what he had
missed was nonexistent. Unfortunately, he’s not unique in his lack of atten-
tion to his past. I think it is a common trait of modern testing practice.

Testing is a present-oriented task. By this I mean that testers are mostly
caught in the moment and don’t spend a lot of time thinking about the
future. We plan tests, write them, execute them, analyze them, and quickly
forget them after they have been used. We don’t spend a lot of time think-
ing about how to use them on future versions of our application or even
other testing projects.

Test teams are often even worse about thinking toward future efforts.
Tests are conceived, run, and discarded. Features are tested without docu-
menting the insights of what worked and what did not work, the good tests
versus the bad. When the testing has finished, what has the team really
learned?

Even the industry as a whole suffers from this amnesia. How many
times has an edit dialog been tested over time and by how many different
testers? How many times has the same function, feature, API, or protocol
been tested? What is it about testing, that we don’t take collective wisdom
seriously?

Often, the memory of good tests and good testing resides in the head of
the testers who performed it. However, testers move from project to project,
team to team, and company to company far too often for them to be a use-
ful repository of knowledge.

Test cases aren’t a good currency for such memory either. Changes to an
application often require expensive test case maintenance, and the pesticide
paradox lessens the value of preexisting tests.

Tours are somewhat better because a single tour can represent any
number of actual test cases, and if we are diligent about mapping tours to
features and to bugs, we will create a ledger for our product that will give
the next set of testers a great deal of insight into what we did that worked
and what was less effective.

Conclusion
The industry’s approach to manual testing has been either to overprepare
by writing scripts, scenarios, and plans in advance or underprepare by sim-
ply proceeding in an ad hoc manner. Software, its specs, requirements, and
other documentation change too much to over-rely on the former and is too
important to entrust to the latter. Exploratory testing with tours is a good

Touring and Testing’s Primary Pain Points 121

www.it-ebooks.info

http://www.it-ebooks.info/

middle ground. It takes the testing task up a level from simple test cases to
a broader class of test strategy and technique.

Having a strategy and a set of prescriptive techniques allows testers to
approach their task with much more purpose, directly addressing the prob-
lem of aimlessness. Tours also force a more variable approach to test case
creation, so that the problems of repetitiveness and monotony are attacked
head on. Furthermore, the tours provide a structure to discuss test tech-
nique and create a tribal knowledge and testing culture to address both
transiency (as much as it can be addressed without real users in the loop)
and memorylessness. Tour usage can be tracked, and statistics about their
coverage and bug-finding ability can be compiled into more meaningful
and actionable reports that testers can learn from and use to improve their
future efforts.

Exercises

1. Think about the software you use every day. Write a tour that describes
the way you use it.

2. If testers could acquire data from their users and use it during testing,
we would likely find more bugs that users would care about. But users
are often uncooperative in sharing their data files and databases. Can
you list at least three reasons why?

3. How can a tester keep track of what parts of the application have been
tested? Can you name at least four things a tester can use as the basis
for completeness measures?

122 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8
The Future of Software Testing

“The best way to predict the future is to invent it.”
— Alan Kay

Welcome to the Future
Modern software testing is a far cry from the discipline as practiced in the
past. It has evolved and changed a great deal since the middle part of the
last century, when the first programs were being written.

In the early days of computer programming, the same people who
wrote software were the ones who tested it. Programs were small and by
today’s standards very simple. They were algorithms, physics problems
really, that were often completely specified (as most mathematical algo-
rithms tend to be), meant only to be run on a single computer in a very con-
trolled environment and used by people who knew what they were doing.
Such control of complexity, the operational environment, and usage pat-
terns is a far cry from modern software that must run on nearly any com-
puter and be used by nearly any user and that solves problems much more
diverse than the physics problems and military applications that dominated
the birth of computing. Today’s software truly requires professional test
engineers.

But somewhere between the dawn of computing and the time of this
writing, software testing took a fateful turn. There was a point at which the
need for software applications outpaced the ability of trained programmers
to produce them. There simply were not enough coders. One of the many
solutions to this problem was to separate the roles of developer and tester.
To free up time of those trained to code, the problem of testing that code
was put into the hands of a new class of IT professionals, the software
testers.

This was not a partition of the existing developer community into dev
and test, that would not have served to increase the number of developers;
instead, software testing became more of a clerical role, with the reasoning

www.it-ebooks.info

http://www.it-ebooks.info/

that because they didn’t have to program, testers did not need to be as
technical.

Obviously, there were exceptions, and places like IBM, DEC, and the
new player on the block Microsoft hired programming talent for testing
positions, particularly within groups that produced low-level applications
such as compilers, operating systems, and device drivers. But outside these
islands of ISVs, the tradition of hiring nontechnical people for testing roles
became pervasive.

Modern testers still come from the nontechnical (or at least non–computer
science) ranks, but there is a great deal of training and on-the-job mentoring
available now, and this trend is slowly reversing. In my opinion, however,
the slow evolution of our discipline is not enough to keep pace with the
major advances in computing and software development. Applications are
getting much more complicated. Platforms are becoming much more capa-
ble, and their complexity is mushrooming. The applications of the future
that will be built on these new platforms and that were discussed in
Chapter 1, “The Case for Software Quality,” will require a level of testing
sophistication that we do not currently possess. How will we as a test com-
munity rise to the challenges of the future and be in a position to test these
applications and help make them as reliable and trustworthy as they need
to be? In a world where everything runs on computers and everyone
depends on software, are we confident that the way we test now is good
enough?

I am not. In fact, in many ways the applications of the future are just
not testable given our current toolset and knowledge base. The rate of fail-
ure of most all of our current software systems makes it hard to argue that
what we have now in testing is enough for today’s applications, much less
tomorrow’s. To have some degree of optimism in the quality of tomorrow’s
software, we are going to need some new tools and techniques to help us
get there.

That’s what this chapter is about: painting a picture of the future of
software testing that will actually work to deliver the highly reliable appli-
cations of tomorrow. These are a collection of ideas and visions about what
software testing ought to be.

The Heads-Up Display for Testers
The tester sits in her office, papers full of printed diagrams, prose, and tech-
nical information scattered haphazardly across her workspace, a full dozen
folders open on her desktop containing links to specifications, documenta-
tion, and bug databases. With one eye, she watches her email and instant
message clients waiting for answers from her developers about bug fixes.
With the other eye, she watches the application under test for symptoms of
failure and her test tools for progress indicators. Her mind is a hodgepodge

124 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

The Future of Software Testing 125

of test cases, bug data, spec data…so much information that she’s over-
whelmed with it and yet not enough information to do her job properly.

Contrast the tester’s predicament with that of the computer (or console)
gamer. Gamers have no need for workspace. That area can be used for
empty soda cans and chip wrappers; every piece of information they
require about their video game is provided by the video game itself. Unlike
the tester who must sit and wonder what the application is doing behind
the interface, gamers can see their entire world laid out in front of them.
Thanks to their heads-up display, information seeps into their conscious-
ness automatically.

Consider the wildly popular World of Warcraft online game and its
heads-up display. In the upper-right corner of the screen, a mini map of the
world pinpoints the hero’s exact location. Across the entire bottom of the
screen, every tool, spell, weapon, capability, and trick the hero possesses is
laid out for easy access. In the upper left, information about objects in the
world, adversaries, and opportunities stream into view as the hero moves
about the world. This information, called the “heads-up display,” overlays
the users’ view of the game world, making them more effective without
reducing their ability to play and enjoy it.

This parallels nicely with software testing, I think, to produce a nice
vision for our future—a future in which information from the application
and the documents and files that define it are seamlessly displayed in a
configurable skin that overlays the application under test: the tester’s heads-
up display, or THUD for short.

Imagine a heads up display that allows the tester to hover the cursor
over a UI control and a window into the source code materializes. Don’t
want to see the source? That’s fine because you can also view the code
churn (fixes and modifications to the source code) information and bug fix
history, and view all the prior test cases and test values for that control and
any other information relevant to the tester. It is a wealth of information at
your fingertips, presented in a noninvasive manner to be consumed by the
tester as needed. Useful information painted on the canvass of the applica-
tion under test.

Information is important enough that the THUD allows any number of
overlays. Imagine a game world where targeting information is grafted
over adversaries so that they are easier to shoot. The tester can see architec-
tural layer dependencies overlaid on top of the UI while the application is
running, quickly spotting hotspots and understanding the interaction
between the inputs she applies and architectural and environmental
dependencies. You could experience the interaction between a web app and
its remote data store, much like Master Chief of the Halo Xbox series con-
quers a level. You could watch inputs trickle through two levels of stored
procedures, or see the interaction between an API and its host file system
through a visual experience that mirrors the game world experience of
today.

www.it-ebooks.info

http://www.it-ebooks.info/

From this knowledge will come much better guidance than what we
have now. As we play our video game called software testing, we will know
when bugs get fixed and what components, controls, APIs, and so forth are
affected. Our heads-up display will tell us. As we test, we will be reminded
of prior inputs we applied and past testing results. We’ll be reminded of
which inputs are likely to find problems and which ones already have been
part of some automated suite or even a prior unit test. The THUD will be a
constant companion to the manual tester and a font of knowledge about the
application under test, its structure, its assumptions, its architecture, its
bugs, and entire test history.

The existence of the THUD will be to testers what the HUD is to gamers
now. You simply don’t play a video game with the HUD turned off.
Without the information the HUD provides, you’d never manage to navi-
gate the complex and dangerous world of the game. HUD-less, you could
have but one strategy: Try everything you can think of and hope for the best.
That pretty much sums up what a lot of THUD-less software testing is
today. Without the right information, displayed when and how we need it,
what else are we supposed to do?

In the future, the experience of the software tester will be unrecogniz-
able from what it is today. Manual testing will become much more similar
to playing a video game.

“Testipedia”
The THUD and the technology it will enable will make testing much more
repeatable, reusable, and generalize-able. Testers will be able to record man-
ual test cases to have them automatically converted to automated test cases.
This will increase the ability for testers across different teams, organiza-
tions, or even companies to share test experiences and test assets. The
development of resources to access and share these assets is the obvious
next step. I call these resources Testipedia in deference to its analogous pred-
ecessor Wikipedia.

Wikipedia is one of the most novel and useful sites on the Internet and
often the very top result of an Internet search. It’s based on the idea that all
the information about every concept or entity that exists is in the head of
some human being. What if we got all those human beings to build an
encyclopedia that exposed that knowledge to everyone else? Well, that hap-
pened, and the result is www.wikipedia.org.

Now, let’s apply the Wikipedia concept to testing. I conjecture that
every function you can test has already been tested somewhere and at
sometime by some tester who has come before you. Need to test a user-
name and password entry dialog? It’s been tested before. Need to test a web
form that displays the contents of a shopping cart? It’s been tested before.
Indeed, every input field, function, behavior, procedure, API, or feature has
been tested before. And if not the exact feature, something so close that

126 Exploratory Software Testing

www.it-ebooks.info

www.wikipedia.org
http://www.it-ebooks.info/

whatever testing applied to that prior product also applies to yours to some
greater or lesser extent. What we need is a Testipedia that encapsulates all
this testing knowledge and surfaces the test cases in a form usable by any
software tester.

Two main things have to happen for Testipedia to become a reality.
First, tests have to be reusable so that a test that runs on one tester’s
machine can be transported to another tester’s machine and execute with-
out modification. Second, test cases have to be generalized so that they
apply to more than just a single application. Let’s talk about these in order
and discuss what will have to happen to make this a reality.

Test Case Reuse
Here’s the scenario: One tester writes a set of test cases and automates them
so that she can run them over and over again. They are good test cases, so
you decide to run them, as well. However, when you do run them, you find
they won’t work on your machine. Your tester friend used automation APIs
that you don’t have installed on your computer and scripting libraries that
you don’t have either. The problem with porting test cases is that they are
too specific to their environment.

In the future, we will solve this problem with a concept I call environ-
ment-carrying tests. Test cases of the future will be written in such a way that
they will encapsulate their environment needs within the test case using
virtualization.1 Test cases will be written within virtual capsules that embed
all the necessary environmental dependencies so that the test case can run
on whatever machine you need it to run on.

The scope of technological advances we need for this to happen are
fairly modest. However, the Achilles heel of reuse has never been techno-
logical so much as economic. The real work required to reuse software arti-
facts has always been on the consumer of the reused artifact and not on its
producer. What we need is an incentive for testers to write reusable test
cases. So, what if we create a Testipedia that stored test cases and paid the
contributing tester, or their organization, for contributions? What is a test
case worth? A dollar? Ten dollars? More? Clearly they have value, and a
database full of them would have enough value that a business could be
created to host the database and resell test cases on an as-needed basis. The
more worthy a test case, the higher its value, and testers would be incen-
tivized to contribute.

Reusable test cases will have enough intrinsic value that a market for
test case converters would likely emerge so that entire libraries of tests
could be provided as a service or licensed as a product.

But this is only part of the solution. Having test cases that can be run in
any environment is helpful, but we still need test cases that apply to the
application we want to test.

The Future of Software Testing 127

1 Virtualization plays a significant role in my future testing vision, as you will see later in this
chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Test Atoms and Test Molecules
Microsoft, and other companies I have worked for, is really like a bunch of
smaller companies all working under the same corporate structure. SQL
Server, Exchange, Live, Windows Mobile…there are a lot of testers writing a
lot of test cases for a lot of applications. Too bad these test cases are so hard
to transfer from application to application. Testers working on SQL Server,
for example, don’t find it easy to consume test cases from, say, Exchange
even though both products are large server applications.

The reason for this is that we write test cases that are specifically tied to
a single application. This shouldn’t come as any big surprise given that
we’ve never expected test cases to have any value outside our immediate
team. But the picture I’ve painted of the future requires exactly that. And if
you accept the argument that test cases have value outside their immediate
project, there will be financial incentive to realize that value.

Instead of writing a test case for an application, we could move down a
level and write them for features instead. Any number of web applications
implement a shopping cart, so test cases written for such a feature should
be applicable to any number of applications. The same can be said of many
common features such as connecting to a network, making SQL queries to a
database, username and password authentication, and so forth. Feature-
level test cases are far more reusable and transferable than application-
specific test cases.

The more focused we make the scope of the test cases we write, the
more general they become. Features are more focused than applications,
functions and objects are more focused than features, controls and data
types are more focused than functions, and so forth. At a low enough level,
we have what I like to call “atomic” test cases. A test atom is a test case that
exists at the lowest possible level of abstraction. Perhaps you’d write a set
of test cases that simply submits alphanumeric input into a text box control.
It does one thing only and doesn’t try to be anything more. You may then
replicate this test atom and modify it for different purposes. For example, if
the alphanumeric string in question is intended to be a username, a new
test atom that encoded the structure of valid usernames would be created.
Over time, Testipedia entries for thousands (and hopefully orders of magni-
tude more) of such test atoms would be collected.

Test atoms will be combined into test molecules, as well. Two alphanu-
meric string atoms might be combined into a test molecule that tests a user-
name and password dialog box. I can see cases where many independent
test authors would build such molecules and then over time the best such
molecule would win out on Testipedia, and yet the alternatives would still
be available. With the proper incentives, test case authors would build any
number of molecules that could then be borrowed, leased, or purchased for
reuse by application vendors that implement similar functionality.

An extremely valuable extension of this idea is to write atoms and mol-
ecules in such a way that they will understand whether they apply to an

128 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

application. Imagine highlighting and then dragging a series of 10,000 tests
onto an application and having the tests themselves figure out whether they
apply to the application and then running themselves over and over within
different environments and configurations. At some point, there would
exist enough test atoms and molecules that the need to write new, custom
tests would be minimal.

Virtualization of Test Assets
Environment-carrying test cases are only the tip of the iceberg when it
comes to the use of virtual machines in the future of software testing. One
of the major complexities a tester faces, as discussed in Chapter 3,
“Exploratory Testing in the Small,” is the availability of actual customer
environments in which to run her test cases. If we are shipping our applica-
tion to run on consumer machines, how do we anticipate how those
machines will be configured? What other applications will be running on
them? How do we get the machines in our test labs configured in a similar
manner so that our tests are as realistic as possible?

At Microsoft, they have an amazing tool called “Watson” that gives
insight into what user machines look like and how our applications fail in
actual user situations. Watson is built in to applications that run on user
machines. It detects catastrophic failures and allows the user to choose
whether to package up information about the failure and send it to
Microsoft where it can be diagnosed and fixed. (Fixes are delivered through
Windows Update or other similar update services by other vendors.)

Virtualization technology could be used in the future to improve this
process and to contribute customer environments to Testipedia for reuse.
Imagine that instead of just sending the bug report to Microsoft or some
other vendor, the entire machine (minus personal information obviously) is
virtualized and sent to the vendor over the Internet. Developers could
debug a problem from the actual point of failure on the user’s machine.
Debugging of field failures would be reduced dramatically, and over time a
cache of virtual machines representing thousands of real customer environ-
ments would be stored. With the right infrastructure, these VMs could be
made available as part of a virtual test lab. A trade in buying, selling, and
leasing test labs would supplement Testipedia and relegate test lab design
and construction to the dustbin of twentieth-century testing history.

Visualization
The availability of reusable test labs and test cases will make the job of
future software testers much more of a design activity than the low-level
test case construction activity that it is today. Testers will be collecting

The Future of Software Testing 129

www.it-ebooks.info

http://www.it-ebooks.info/

prebuilt artifacts and using sophisticated lab management solutions to
organize and execute their tests. There exists the distinct possibility that
without the proper oversight and insight, all this testing could miss the
mark by a wide margin.

This points to the need for better software visualization so that testers
can monitor testing progress and ensure that the tests are doing the job that
needs to be done.

But how does one visualize software? What indeed does software look
like? Software is not a physical product, like an automobile, that we can see,
touch, and analyze. If an automobile is missing a bumper, it’s easy to see
the defect, and everyone associated with building the car can agree on the
fix and when the fix is complete. With software, however, this scenario is
not quite that easy. Missing and broken parts aren’t so readily distinguished
from working parts. Tests can execute without yielding much information
about whether the software passed or failed the test or how new tests con-
tribute to the overall knowledge pool about application quality. Clearly,
visualization tools that expose important software properties and allow
useful images of the software, both at rest and in use, to assist testers of the
future would fill an important gap in our testing capability.

Visualizations of software can be based on actual software assets or
properties of those assets. For example, inputs, internally stored data,
dependencies, and source code are all concrete software assets that can be
rendered in ways useful for testers to view. Source code can be visualized
textually in a code editor or pictorially as a flow graph. For example, Fig-
ure 8.1 is a screen shot of a testing tool used in Microsoft’s Xbox and PC
games test teams to help a tester visualize code paths.

Instead of seeing paths as code artifacts, the visual displays the flow in
terms of which screen in the game follows other screens.2 It’s a sequence of
UI elements that allows testers to look ahead and understand how their
inputs (in this case, the input is steering the car through Project Gotham
Racing II) take them through different paths of the software. This visual can
be used to drive better coverage and can help testers select inputs that take
them to more interesting and functionally rich places in the game.

Visualizations can also be based on properties of the application, like
churned (changed) code, coverage, complexity, and so forth. When the visu-
alizations are based on information used to guide testing decisions, that’s
when they are most useful. For example, if you wanted to test, say, the com-
ponents that are the most complex, how would you decide how to choose
the right components?

During the testing of Windows Vista, a visualization tool was con-
structed to expose such properties in a way that is consumable by software
testers. The screen snap in Figure 8.2 is one example of this.

130 Exploratory Software Testing

2 This particular image is taken from the testing of Project Gotham Racing II and is used with
permission of the Games Test Org at Microsoft.

www.it-ebooks.info

http://www.it-ebooks.info/

The Future of Software Testing 131

FIGURE 8.1 A UI visualization tool from the Microsoft Games Test Org.

FIGURE 8.2 A reliability analysis tool used to visualize complexity.

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 8.2 is a visualization of the components of Vista and their rela-
tive complexity.3 Note that each labeled square is a component grouped
according to the feature set to which the component belongs. The size of
each square represents one of the numerous complexity measures the
Windows group has defined, and the color represents a different complex-
ity measure. Thus, bigger and darker squares represent more complex fea-
tures. If our goal were to focus testing on complexity, this visual would be
an excellent starting point.

Good visualizations will require support from the runtime environment
in which the target software is operating. Interactions between the system
under test and its external resources, such as the files, libraries, and APIs,
can no longer be something that happens privately and invisibly and that
only complicated tools like debuggers can reveal. We need the equivalent of
X-ray machines and MRIs that bring the inner workings of software to life
in three dimensions. Imagine a process similar to medical dye injection
where an input is injected into a working system and its path through the
system is traced visually. As the dyed input travels through the applica-
tion’s components, its impact on external resources can be monitored and
experiments conducted to isolate bugs, identify performance bottlenecks,
and compare various implementation options. It will be this level of trans-
parency, scrutiny, instrumentation, and analysis that will enable us to
achieve the level of sophistication in software that is currently enjoyed in
medical science. Software is both complicated enough and important
enough that such an investment is needed.

Clearly, some visualizations will prove to be more useful than others,
and in the future we will be able to pick and choose which ones we need
and when. As we gain experience using visualizations, best practice will
emerge to provide guidance on how to optimize their usage.

Testing in the Future
So what does the future hold for the software tester? How will the THUD-
like tools and Testipedia work with virtualization and visualization tools to
remake the future of the software tester? Here’s how I envision it.

Imagine a software development organization. Perhaps it is a start-up
developing an application meant to run on GPS-enabled cellular phones or
the IT department in a giant financial institution building a new line of
business app. Perhaps it is even Microsoft itself building a cloud-based
application interacting with a small client-side managed application. Any of
these vendors will build their application and then contract with a test
designer. For either the start-up or the IT shop, this is likely to be an exter-
nal consultant, whereas Microsoft may use full-time employees for this task.

132 Exploratory Software Testing

3 This tool was developed by Brendan Murphy of Microsoft Research Cambridge and is used
with permission.

www.it-ebooks.info

http://www.it-ebooks.info/

In either case, the test designer will analyze the application’s testing
requirements and interfaces and document the testing needs. She will then
satisfy those needs by identifying the test assets she needs to fulfill the test-
ing requirements. She may lease or purchase those assets from commercial
vendors or from a free and open source like Testipedia.4

The result will be any number of virtualized operational environments;
I imagine tens of thousands or more, and millions of applicable test cases
and their variants. These environments would then be deployed on a cloud-
based virtual test lab, and the test cases would be executed in parallel. In a
matter of a few hours, the amount of testing would exceed centuries of per-
son-year effort. Coverage of application’s source code, dependent libraries
and resources, UI, and so forth would be measured to quality levels far
beyond our current technology and likely contain every conceivable use
case. All this will be managed by visualization, measurement, and manage-
ment tools that will provide automated bug reporting and build manage-
ment so that little human monitoring will be necessary.

This future will be possible only after some years or decades of devel-
oping and collecting reusable test assets. What it will eventually mean for
software testers is that they will no longer be consumed by the low-level
tasks of writing test cases and executing them. They will move up several
layers of abstraction to the point where they will be designing test plans
and picking and choosing among relevant existing test cases and automa-
tion frameworks.

For the start-up developing cell phone apps, they would be able to
acquire virtual environments representing every conceivable cell phone
their customers would use. LOB app developers would be able to simulate
user environments with every conceivable configuration and with thou-
sands of potentially conflicting applications installed. Microsoft would
be able to create test environments for its cloud-based application that
would meet or exceed the complexity and diversity of the real production
environment.

Test atoms and test molecules numbering in the hundreds of millions
would, over time, be gathered and submitted individually and in groups.
These tests will scour the application looking for every place where they
apply, and then execute automatically, compiling their own results into the
larger test monitoring system so that the human test designer can tweak
how the automation is working and measure its progress. Over hours of
actual time, centuries of testing will occur, and as bugs are fixed, the tests
will rerun themselves at the exact moment the application is available.

By the time the application is released, every conceivable test case will
have been run against every conceivable operational environment. Every

The Future of Software Testing 133

4 Reusable test assets, both virtualized operational environments and test cases/test plans, are
likely to have good commercial value. I can envision cases where multiple vendors provide
commercial off-the-shelf-test assets coexisting with a Testipedia that provides a bazaar-like
open source market. Which model prevails is not part of my prediction; I’m only predicting
their general availability, not the acquisition and profit model.

www.it-ebooks.info

http://www.it-ebooks.info/

input field will have been pummeled with legal and illegal input number-
ing in the millions. Every feature will be overtested, and every potential
feature conflict or application compatibility issue will have been checked
and double-checked. All possible outputs that the application can generate
will be generated numerous times, and its state space will be well covered.
Test suites for security, performance, privacy, and so forth will have run on
every build and intermediate build. Gaps in test coverage will be identified
automatically and new tests acquired to fill these gaps.

And all this is before the application ships. After it ships, testing will
continue.

Post-Release Testing
Even in the face of centuries of testing that we can achieve, testing can
never really be complete. If we’re not done testing when the product
releases, why should we stop? Test code should ship with the binary, and it
should survive release and continue doing its job without the testers being
present to provide ongoing testing and diagnostics.

Part of this future is already here. The Watson technology mentioned
earlier (the famous “send/don’t send” error reporting for Windows apps)
that ships in-process allows the capture of faults when they occur in the
field. The next logical step is to do something about them.

Watson captures a fault and snaps an image of relevant debug info.
Then some poor sap at the other end of the pipe gets to wade through all
that data and figure out a way to fix it via Windows update. This was revo-
lutionary in 2004, still is actually. In two to five years, it will be old school.

What if that “poor sap” could run additional tests and take advantage
of the testing infrastructure that existed before the software was released?
What if that poor sap could deploy a fix and run a regression suite in the
actual environment in which the failure occurred? What if that poor sap
could deploy a production fix and tell the application to regress itself?

He would no longer be a poor sap, that’s for sure.
To accomplish this, it will be necessary for an application to remember

its prior testing and carry along that memory wherever it goes. And that
means that the ability to test itself will be a fundamental feature of software
of the future. Our job will be to figure out how to take our testing magic
and embed it into the application itself. The coolest software feature of the
future could very well be placed there by software testers!

Conclusion
The world of the software tester is full of information. Information flows
from the application we are testing, the platform and environment the
application runs in, and from the development history of the application

134 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

itself. The way testers consume and leverage this information will ulti-
mately determine how well applications are tested and subsequently the
quality levels of the applications that make up the software ecosystem. The
only successful future for software testers is one where we master this infor-
mation and use it in the ways previously prescribed failing to do so will
mean the same levels of low quality our industry has historically achieved.

Any number of industries have successfully harnessed such a large
amount of information, and we should look to those industries for inspira-
tion. The one I think represents the best model for software testing is the
video gaming industry, where the sheer amount and complexity of informa-
tion is just as overwhelming as the body of information software testers
must handle. However, gamers can handle this information simply and ele-
gantly through their collection of tricks, tips, cheats, and the almighty
heads-up display. It really boils down to information at the gamer’s finger-
tips and a shared set of strategies and guidance available to all so that new
gamers can rapidly become experts through the experiences of old gamers.

In fact, the gaming world has been so successful that their processes,
tools, and techniques have built incredibly engaging products that have cre-
ated their own complex economies and changed society in some very fun-
damental ways. Surely, if they can take information and guidance that far,
so can software testers!

The processes, techniques, and guiding principles of the gamer are a
compelling model for the software tester to mimic. In the future, informa-
tion should flow seamlessly and conveniently from the application under
test, its environment, and its history of use directly to the tester in the most
simple-to-consume form: a heads-up display for testers. Testers will be as
equipped as gamers to navigate a complex world of inputs, outputs, data,
and computation.

Testing stands to gain a substantial amount in terms of productivity,
precision, and completeness. And, who knows, if testing is like playing a
video game, it might just be more fun as well.

Exercises
1. Name five things you’d want on a tester’s heads-up display.
2. Name five things you’d want on an exploratory tester’s heads up

display.
3. If you had to write a business plan for Testipedia, how would you

argue its utility?
a. Write a summary of how Testipedia could be used as a free commu-

nity asset.
b. Write a summary of how Testipedia could be used to make a profit.

The Future of Software Testing 135

www.it-ebooks.info

http://www.it-ebooks.info/

4. In Chapter 3, testing in the small was broken into input, state, code
paths, user data, and environment issues. Besides environment, which
of these issues is the best possible candidate for using virtualization?
Explain how virtualization could be used to support better testing of
this issue.

5. Figure 8.2 is often called a “heat map” and shows two aspects of the
application under test: size and complexity. Name two additional prop-
erties of software that would be useful to visualize in this manner.
Explain how these properties might be used to guide a tester.

6. Could the infrastructure for post-release testing be misused by a
hacker? Give a case that might be a problem. Can you name another
concern a user might have with a post-release testing infrastructure?
How might these problems be overcome?

7. Have a class/team/group discussion about whether human testers
might one day become obsolete. What parts of the future of testing still
require a human tester to be present? What would have to happen for
software companies to no longer be required to employ large numbers
of in-house testers?

136 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A
Building a Successful Career in Testing

“If you have a job without any aggravations, you don’t have a job.”
—Malcolm Forbes

How Did You Get into Testing?
I made the transition from software developer to software tester in 1989,
when I was a graduate student at the University of Tennessee. It was not a
transition I made by choice. One fateful morning, my professor1 confronted
me about my missing too many development meetings. The meetings, I
explained, were inconveniently convened on a Saturday morning, and as a
new graduate student living away from home for the first time in my life,
this particular time slot was problematic.2 Interestingly enough, my punish-
ment was not a pink slip, but a sentence to be the sole tester of the group
and to have no interaction with the development team at all.3

How fateful this decision was for my career, which has produced
dozens of papers on testing, tools so numerous I can’t even remember them
all, five books, and countless happy hours at work. Testing has been a cre-
ative, technically challenging, and fulfilling career for me; but the same can-
not be said of everyone. Granted, my introduction to the field was an
intensive, graduate school immersion, and there are certain advantages to
that. But moreover, I think there is a testing hump that exists between the
novice and expert stages that people need help climbing, through a combi-
nation of mentoring, access to information, and general guidance. It’s easy

1 I worked on a well-funded development project using Cleanroom Software Engineering
under the direction of Professor Jesse Poore of the University of Tennessee and the supervi-
sion of Harlan D. Mills, who was at Florida Tech at that time and was the inventor of the
Cleanroom methodology.

2 The time slot was complicated by the fact that I had met and was living with a girl who con-
sidered Saturday to be off limits for work. Given that I eventually married and had kids with
that girl, one could say I got into testing to improve my love life.

3 Cleanroom requires complete independence of developers and testers.

www.it-ebooks.info

http://www.it-ebooks.info/

to become a novice tester, and not too hard to become proficient. It’s climb-
ing the hump from proficient to expert that this chapter is about.

Back to the Future
Time has stood still on the discipline of software testing. We do things in
the twenty-first century much the same as they were done last century.
Bill Hetzel’s 1972 collection4 of testing knowledge is still very relevant
today, and my own How to Break Software series first published in 2002
has yet to be supplanted as the chief resource for actual software testing
techniques.

Indeed, if it were possible to transport testers from the 1970s to the
present, I expect that we’d find their skills adequate for testing of modern
software. They’d have to learn about the Web and various protocols, but the
techniques they possess for actual testing would translate fairly well. Take
one from the 1990s, and almost no training at all would be required.

The same cannot be said of developers, whose last-century skills would
be almost completely obsolete. Ask anyone who hasn’t coded for a while to
take the practice up again and see what kind of reaction you get.

It bothers me more than a little that we can hire bodies off the street and
they can test and be productive from day one. Can it really be that easy? Or
are our expectations simply that low? It bothers me even more that we can’t
take decent testing talent from being productive to being an expert in any
predictable fashion. Can testing really be that hard?

It’s that hump again. The price of entry is low, but the road to mastery
is difficult.

On the approach to the testing hump, we rely on the fact that many
aspects of testing are easy to master. Most anyone can learn to be decent at
it. Apply even a little common sense to input selection and you will find
bugs. Testing at this level is real fishing-in-a-barrel activity, enough to make
anyone feel smart. But after the approach, the path steepens sharply, and
testing knowledge becomes more arcane. We find that some people are
good at it, and we call them “naturals” and praise their instincts.

But must they be instincts? Is the path across the hump navigable by
more than just those who seem born to do it? Is testing teachable in a way
that more experts can be created? I think the hump is navigable, and this
chapter is my notes on how to go about doing just that in your own career.
It’s not a recipe because a career is no cookbook. But you can do some
things to accelerate your career. But, as you might have guessed, they are
easier to talk about than to actually do.

138 Exploratory Software Testing

4 W. Hetzel (editor), Program Test Methods, Englewood Cliffs, NJ: Prentice-Hall, 1972.

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Successful Career in Testing 139

The Ascent
Early in a testing career is the time to prepare for the long ascent up the
testing hump. The best advice I can give is to think in halves. For every
project you do, there are two sets of (not necessarily equal) tasks. The first
task is doing what it takes to make the current testing project succeed. The
second task is learning what you need to do to make the next testing project
easier. I call this testing for today’s project while preparing for tomorrow’s. If
every project is split into two such halves, one has almost guaranteed con-
sistent improvement so that with each project you do, you’ll be a better
tester because of it.

So let’s concentrate on the second task, preparing for the next project.
The things to watch out for are repetition, technique, and holes.

Repetition
Never do anything twice without realizing it and questioning it. This is the
one thought I want all young testers to get in their head. I see so many
novices waste time on mundane tasks such as setting up test machines, con-
figuring a test environment, installing the application under test in a lab,
choosing a build to test, the list goes on and on until you find that so little
of your time is actually spent testing software.

This is the mistake that many new testers make. They fail to see the
repetitive nature of their day-to-day activity, and before they know it,
they’ve gone hours without doing any actual testing. Pay attention to repe-
tition, and note the amount of time it is taking away from your real job of
testing the software. To get over the testing hump, you will have to be a
tester, not a lab manager or test machine administrator.

Automation is the answer to repetition and a subject for later in the
chapter.

Technique
Testers often analyze failures. When we analyze bugs, we are studying our
developers’ failure to write reliable code. We also analyze bugs we missed.
After our application ships and customers begin reporting bugs, we face the
prospect of dealing with our collective failure to find important bugs. Each
field-reported bug indicates our broken processes and gaps in our testing
knowledge.

But analyzing our successes is also important, and many new testers
fail to take advantage of this low-hanging fruit. Every bug we find during
testing is a success, an indication that our testing process is working. We
need to fully grasp this excellence so that it gets repeated.

Sports teams do this. They watch tapes of games and analyze why each
play worked and why each play didn’t work. I vividly recall such an inci-
dent when a friend took pictures of my son playing soccer. One such pic-
ture captured his strike that ended up going past the opposing keeper for a
goal. When I showed it to my son, I pointed out how his plant foot was per-
fectly positioned, and that his kicking foot was toe-down and placed so that

www.it-ebooks.info

http://www.it-ebooks.info/

the ball was struck on the sweet spot at his laces. He stared at the picture a
long time, and since then he has rarely struck a ball incorrectly. He may
have done it right by accident when he scored, but forever after his tech-
nique has been purposeful and near perfect.

Now back to the lesson for new testers. All of us will have our moment
in the sun. We’ll find that huge hole, that high-priority bug, and be cele-
brated for doing so. But take a moment to look at the bigger picture. What
technique did we use to find that bug? Can we create a recipe for finding
more just like it? Can we take to heart some real testing guidance and apply
it over and over to make ourselves more effective? What symptoms did the
software exhibit that clued us in to the presence of the bug? Can we now be
more alert to those symptoms in the future? In other words, it’s not just
about this one bug and this one success. What does this bug teach us that
will make us better testers in the future?

Just like my son’s goal, even if the first bug is found by accident, it
doesn’t mean that the rest have to be so. It’s important to understand the
reasons we succeed, so that success gets repeated. For testers, these reasons
will be a collection of testing techniques, advice, and tools that will increase
our effectiveness on future projects.

Holes
Testers ultimately get pretty good at finding bugs, but to get over that test-
ing hump we have to do it efficiently and effectively: high speed and low
drag. In other words, we have to have a bug-finding technique that itself
contains no bugs!

I like to think of it this way: Testers need to turn their bug-finding abil-
ity on themselves. We have to use the same bug-finding process to find
bugs in our own testing processes and procedures. Is my testing process
broken? Does it have bugs? Are there barriers that are preventing me from
being more productive?

Always look for a better way. Purposefully identify those things that
limit your ability, get in your way, slow you down, and so on. Just like bugs
limit the ability of software to deliver on its requirements, what is limiting
your ability to test? Using your testing powers to streamline your own test-
ing processes will create a rapid ascent up the testing hump and increase
the chances of coming out the other side as an expert.

The Summit
The summit of the testing hump is a good place to be; congratulations if
you make it. But it is not the end game. It means that you’ve become a great
individual tester, but the descent is where your insight and expertise help to
make those around you good testers, too. It’s one thing to summit a moun-
tain, it’s quite another to help others (who may not be as strong) do so.

Generally, folks who reach the testing summit become masters of tools.
Commercial tools, open source and freeware tools, and (my personal
favorite) homegrown tools are excellent ways to increase your productivity

140 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

and amplify your effectiveness. But tools are only one way to accomplish
this, and in many ways are limiting because too many people don’t see
beyond the capability of the tools. Instead, they become limited by what the
tools can do for them and don’t see or understand the bigger need. The real
mastery required for the summit is information. Because many tools process
information and make it easily available, testers put too much stock in their
tools. But it is the information and how it is used that is the real key to
success.

Mastering information means understanding what information is avail-
able, how it impacts testing, and ensuring that that impact is maximized.
There are several types of information the test summiteer must pay atten-
tion to. The two I cover here are information from the application and infor-
mation from prior testing.

Information from the application means information about require-
ments, architecture, code structure, source code, and even runtime informa-
tion about what the application is doing while it is executing. The extent to
which this type of information is considered when writing test cases and
executing them weighs heavily on the ability of testers to make their testing
matter. The more such information is used during testing, the more testing
becomes like engineering and less like guesswork.

At Microsoft, our Games Test Organization (GTO), which owns testing
of Xbox and PC game titles, takes the top prize when it comes to the use of
information from an application. Games are incredibly rich and complex to
test. Much of the testable content of a game is hidden (because discovery of
the items that a gamer can interact with is part of the fun of playing the
game), and if all GTO testers bothered doing was playing the game, they
would be no more productive than their ultimate customers. To do better,
they worked with the game developers to build information panels that
exposed what is essentially cheating information to testers. Testers would
know in advance where creatures would be spawned; they would know
where objects were hidden; they would be able to see through walls and
force certain behaviors from adversaries. Their “cheats” (aka testing tools)
essentially make them gods within the game, controlling information as
they see fit in order to test faster and test smarter. There is a lesson in this
for all testers.

Information from testing means paying attention to what you are doing
while testing and using what you learn to influence your testing going for-
ward. Do you understand how your tests are tied to requirements and
when a certain requirement has received enough testing? Do you use code
coverage to influence future tests? Do you know which tests are impacted
by code updates and bug fixes or do you just run them all? Understanding
where your tests have been and adjusting your strategy as you test is a sure
sign of testing maturity.

My former group within Visual Studio at Microsoft makes heavy use of
code churn (code changes due to new features being added and bugs being
fixed) and code coverage to influence our testing. We take great pains to

Building a Successful Career in Testing 141

www.it-ebooks.info

http://www.it-ebooks.info/

expose code coverage and code churn to testers and help them understand
which test cases contribute to coverage and help test churned/modified
components. The end result is that when the code does churn, we know
which tests are impacted and rerun those. We also understand how each
new test case contributes to overall interface, feature, and code coverage.
Our testers are thus guided to write more meaningful tests within the con-
text of all prior testing performed by everyone on the team.

What information do you use to guide your testing? How do you
ensure that the information is available so that you have ready access to it
during testing? How do you make information actionable so that it influ-
ences your testing in positive ways? The answer to these questions will
determine the speed of your descent down the expert side of the testing
hump.

The Descent
By the time you’ve reached the summit of the testing hump, you’ve become
a much more effective tester and are probably capable of performing at the
level of any number of your peers put together. Whatever you do, don’t try
to outperform your whole team, no matter how good it might make you
feel or how hard your boss is pushing you to do so. Once you’re on the
decent, it is no badge of honor to be the most prolific bug finder or the one
who finds the best bugs. Instead, I recommend that you actually reduce the
time you spend testing and make innovation your primary focus.

To innovate in test means to stand back and make insights, find bottle-
necks, and improve how everyone else on the team manages to do their job.
Your job becomes making others better. At Microsoft, we have an official
role for this that we call Test Architect, but don’t let the lack of a cool title
stand in your way. No matter what they call you, if you are on the descent,
the best thing you can do is to ensure that as many others as possible climb
the other side of the hump.

142 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX B
A Selection of JW’s Professorial “Blog”

“Those who can do, those who can’t teach.”
—George Bernard Shaw

Teach Me Something
As a long time teacher, I’ve come to appreciate the above quote from the
Irish playwright and Nobel laureate. However, I would add that no matter
what practical experience you may have, you never really know a subject
until you have to teach it. There are so many nuances to engineering
endeavors that we don’t think about except at an intuitive level. Having to
explain those nuances to someone else is a lot harder than it sounds.

I teach all the time, but my ten-year professorial career is the time in
which I taught the most. Every day I was either teaching or preparing my
course materials. It provided a lot of thinking time and in-class debate time
to help me think through the whole job of testing.

I’ve included some of the more lively and obscure material in this chap-
ter. Much of it is unpublished…the closest thing we had in the early 1990s
to a blog. There is some insight here, but enough humor to make it palat-
able for what was then my primary constituency: the college student.

Software’s Ten Commandments
Reprinted with permission from Software Quality Engineering. See this and more
of James’s work at www.stickyminds.com.
In 1996, I posted my version of the ten commandments of software testing
on a website. I wrote these commandments in the middle of the night when
I couldn’t sleep. I was thinking about what things I could do to try to repro
an elusive bug. As most testers will attest, sleep can be hard to come by in
such a circumstance! Somehow in my slightly warped tester brain, these
“things” took the form of commandments. It was a very spiritual moment.

www.it-ebooks.info

www.stickyminds.com
http://www.it-ebooks.info/

I took the time to write the commandments down, and then promptly
went into a very deep sleep that made me late for work the next day. I was
determined not to make my sleepless night—and late arrival—completely
without benefit and decided to post the commandments to my website.
(You can still find them at www.howtobreaksoftware.com/.) I wondered if
anyone would notice.

Well, I can now say for certain that, indeed, they noticed. It took a
while, but I started getting mail about them. At first, the mail trickled in.
Then, months later, it began pouring in, at the rate of two or three a month.
It steadily increased until I would be surprised if a week would go by with-
out getting at least one note about my commandments.

The mail was neither complimentary nor derogatory. In typical testing
fashion, it was inquisitive. Could I please interpret one of the command-
ments? Would I settle a bet between two colleagues about commandment
number four (except I thought “settle” meant “pay,” and I told them “no”)?
And the most frequently asked question: Why are there only nine com-
mandments?

Well, after hundreds of private e-conversations (some of them months
long in duration) with individual testers around the globe, I have finally
decided to come clean, publicly, and get these commandments “off my
chest” once and for all. But it will take three of these columns to accomplish
the task. This column explains the first two. The second will explain num-
bers three through six, then seven through nine (and the lack of the tenth)
in the third column. I hope you enjoy them, as I have enjoyed them over the
years.

First, I’ll just list the commandments so that you can see them as origi-
nal visitors to my old website saw them, listed but not explained:

1. Thou shalt pummel thine app with multitudes of input.
2. Thou shalt covet thy neighbor’s apps.
3. Thou shalt seek thee out the wise oracle.
4. Thou shalt not worship nonreproducible failures.
5. Thou shalt honor thy model and automation.
6. Thou shalt hold thy developers’ sins against them.
7. Thou shalt revel in app murder (celebrate the BSOD!).
8. Thou shalt keep holy the Sabbath (release).
9. Thou shalt covet thy developers’ source code.1

And now, here are my interpretations of numbers one and two. I just
hope I remember all the things I included in my earlier interpretations!
Any of my old correspondents are welcome to chime in at the end of this
column.

144 Exploratory Software Testing

1 There is a reason there are nine instead of ten—more about that later.

www.it-ebooks.info

www.howtobreaksoftware.com/
http://www.it-ebooks.info/

A Selection of JW’s Professorial “Blog” 145

1. Thou Shalt Pummel Thine App with Multitudes of Input
One of the first things that any tester learns is that the input domain of
almost any nontrivial software application is infinite. Not only are there lots
of individual inputs, but inputs can be combined and sequenced in so many
different combinations that it is impossible to apply them all. One of the
second things testers learn is that the trick is to apply the right set of inputs
so that infinity doesn’t have to be faced head-on.

Well, of course I agree with this approach. My own writing and teach-
ing is full of advice on how to select the right set of inputs. But I also coun-
sel testers to buck up and face infinity anyway. The method of doing this:
massive-scale random testing. It is a tool that should be in every tester’s
toolkit and few, if any, testing projects should be without it.

Massive-scale random testing must be automated. Although it isn’t
easy to do the first time, it does get progressively easier with each project
and eventually becomes rote. It may not find a large number of bugs, but it
is an excellent sanity check on the rest of your testing: If you are outper-
formed by random testing, you may have a problem on your hands. And I
am always pleased with the high-quality (albeit few in number) bugs that
random testing manages to find.

Another reason to apply massive-scale random testing is that setting
up such tests requires a healthy knowledge about the input domain of the
application under test. Testers must really get to know their inputs and
the relationships that exist among the inputs. I almost always find bugs
and get good testing ideas just from the act of planning massive-scale ran-
dom testing.

2. Thou Shalt Covet Thy Neighbor’s Apps
This commandment sounds a bit perverted, but I can assure you it has a
“G” rating. The idea I am trying to get across here is not to test your appli-
cation in isolation. Otherwise, you might run into the nightmare scenario of
“application compatibility,” or more specifically, lack thereof. Application
compatibility, or “app compat” as it is widely abbreviated, means that one
application does something to break another one. In case you are not sure,
that is a bad thing.

One way to combat this problem is to keep a cache of apps (old ones,
new ones, borrowed ones, blues ones—the more diverse the better) and
make sure that you run your app at the same time each of these are run-
ning. Of course, we want to do this with operating systems as well. A user
should not have to tell you that your application won’t run with a specific
service pack installed; that is something you should find out in your own
testing.

So covet those apps and those service packs: The more the merrier!

www.it-ebooks.info

http://www.it-ebooks.info/

3. Thou Shalt Seek Thee Out the Wise Oracle
We all know that there are at least two parts to testing. First we apply; then
we check. When we apply inputs we are testing whether the software did
what it was supposed to do with those inputs. Without the ability to verify
that this is indeed fact, testing is much less effective.

Testers call this the “oracle problem” in reference to the wise oracle that
knows all the answers. Of course, the answer we are interested in is “did
the app do what it was supposed to do when I applied some test?” This
requires our oracle to intimately understand what the application is sup-
posed to do given any specific combination of inputs and environmental
conditions. Automating the oracle is very hard, but a worthwhile pursuit,
not only as a valuable testing tool but also as an intellectual pursuit. Forcing
yourself to think like such an oracle can often be more productive than any-
thing else that you might choose to do, whether or not you ultimately suc-
ceed in automating it.

4. Thou Shalt Not Worship Irreproducible Failures
We’ve all been here, haven’t we? You see a bug, usually a good bug; then it
won’t reproduce. The better the bug, the worse you feel about it. I have seen
many good testers waste hours and even days trying to reproduce a bug
that they saw only once.

The effort to reproduce such a bug is often valiant but without the
proper tools, the effort can be a waste of time. But the problem I see is that
the time is wasted anyhow, without the tester even realizing it. I had a
tester spend an entire day trying to remember the reproduction steps of a
crashing bug, with no success. I would have preferred that the particular
tester spend his time in better ways than that. I understand the frustration
as well as any tester, but the pursuit of such a bug is often time not well
spent.

The moral of this commandment is twofold. First, try your best to be
ever alert and remember (or record) the sequences of actions you are taking
against the software. Remember also the application’s response. Second,
consider using debugger-class tools that can track your actions and the state
of the software. This takes much guesswork out of reproducing bugs and
prevents otherwise good testers from breaking this commandment.

5. Thou Shalt Honor Thy Model and Automation
Commandment one was about the importance of random testing—empha-
sis on random. This commandment is about intelligent random testing—
emphasis on intelligent. When intelligence meets automation, the result is
called model-based testing. Get used to the term because it is the automa-
tion technology of the future.

Software models such as objects, black boxes, or structure diagrams
help us to understand software. Testing models help us understand testing.

146 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

A testing model is a blend of intelligence about what an application does
(the model) and how it does it (the automation). Good models can make
your automation smart enough to respond to errors and cover code that is
out of reach of dumb automation. Modeling is an exercise that at the very
least will make you more prepared to test, even if you don’t bother to auto-
mate it.

6. Thou Shalt Hold Thy Developers Sins Against Them
Development work is hard, very hard. Developers over the past few
decades have had to solve the same problems over and over again, and in
doing so, often make the same mistakes over and over again. We testers
must remember those mistakes and design tests that ensure that lessons are
being learned.

If one developer makes a mistake coding some module, then we should
assume that other developers might make the same mistake on similar
modules. If a particular developer is prone to coding infinite loops, then we
need to make sure we test for such errors in every module that the devel-
oper writes. This is “learning from experience,” and we are here to make
sure that is what our developers do: understand their patterns of mistakes
so those mistakes can be eradicated.

7. Thou Shalt Revel in App Murder (Celebrate the BSOD)
I often make an analogy between testers and physicians. Physicians, I say in
the story, treat their patients gingerly. They say, “Does it hurt when I touch
you here?” And then they promptly stop touching that spot when you say
“Yes!” If testers were physicians, the story would be somewhat different.

Test-physicians would also inquire, “Does it hurt when I touch it here?”
But when the pain is confirmed, a test-physician would then poke, prod,
and probe, until the pain became unbearable. Why? Well, it isn’t sadism; it’s
our job. No bad deed should go unpunished.

You see, every bug is a proud moment for a tester, but no bug should go
without further investigation. So you found a bug that causes ill-formatted
data to be displayed on the screen. Great, but can you go further and make
that same bug corrupt data that the application is storing internally? If so,
you have a better bug. And, can you then make that corrupt data be used
by the application in some internal computation? If so, you have now
turned a simple little formatting bug into a severity-one bug that causes
data to be corrupted and the application to crash.

And, of course, the Holy Grail would be to crash not only your applica-
tion, but also to cause the entire operating system to hang. Ah, the blue
screen of death. I remember my first like it was yesterday, I anticipate my
next every time I apply a test.

The moral of this commandment is that behind every good bug, there
may be a better bug. Never stop exploring until you’ve discovered just how
deep the bug goes and just how damaging it can be.

A Selection of JW’s Professorial “Blog” 147

www.it-ebooks.info

http://www.it-ebooks.info/

8. Thou Shalt Keep Holy the Sabbath (Release)
Oh so many times I hear testers whine about release dates. Testers most
often want to extend release dates and, more often than not, their reasoning
for wanting to do so is right on the mark. But their reasoning sometimes
doesn’t matter.

The fact is that there are more factors than just quality that go into
determining when to release an application to users. Quality is important
but market pressures, competition, strength of user demand, staffing and
personnel issues, and many more nontesting issues must determine a suit-
able release date. As testers, we must simply get the most work done that
we can in the amount of time allotted to us.

We should not complain about release dates. We should, instead, warn
about consequences. That is the extent of our responsibility, and it should
be the extent of our concern.

9. Thou Shalt Covet Thy Developer’s Source Code
I am not much of a believer in white-box testing. I think that it is something
developers should learn to do well so that we testers can concentrate on
more important and complex behavioral tests. That said, however, don’t
look a gift horse in the mouth. If you have access to the source code, use it.

But, use it as a tester should, not as a developer would. My interest in
source code is many fold and too involved to discuss all the issues here. But
I think there is much to be learned from reading the source. Top of my list is
looking for error-handling code and the dialog boxes that will indicate to us
that the error code is executing. Error handlers are the hardest code to see
or get to from the user interface. Understanding what error handlers have
been written and what inputs it takes to trigger them is time well spent.

Indeed, there are many such clues we can glean from the source that
give us insight into tests that need to be performed. We should not be shy
about asking for and using the source code.

So that’s the commandments. By the way, there is a reason there are
nine instead of ten. We might assume that just because they are “command-
ments,” there have to be ten of them. Since we know the assumption to be
true (because that’s the nature of an assumption), then we convince our-
selves that there is no need to ever bother checking whether the assumption
may become false.

Assumptions are a very bad thing for software testers. Assumptions can
reduce productivity and undermine an otherwise good project.
Assumptions can even undermine a career. Good testers can never assume
anything. In fact, the reason we are called testers is that we test assumptions
for a living. No assumption is true until we test and verify that it is true. No
assumption is false until we test that it is false.

Any tester who assumes anything about anything should consider tak-
ing up development for a career. After all, what tester hasn’t heard a devel-
oper say, “Well, we assumed the user would never do that!” Assumptions

148 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

must always be tested. I once heard a test consultant give the advice:
“Expect the unexpected.” With this I disagree; instead, expect nothing; only
then will you find what you seek.

Testing Error Code
Reprinted with permission from Software Quality Engineering. See this and more
of James’s work at www.stickyminds.com.

There are two types of code that developers write. First, there is the
code that gets the job done—which we’ll call this type of code functional
code because it supplies the functionality that satisfies user requirements.
Second, there is code that keeps the functional code from failing because of
erroneous input (or some other unexpected environmental condition). We’ll
call this type of code error code because it handles errors. For many pro-
grammers, this is the code that they are forced to write out of necessity, not
because it is particularly enjoyable.

Writing both types of code simultaneously is problematic because there
are context switches that must be made inside the head of a software devel-
oper between the two types of code. These context shifts are problematic;
they require the developer to stop thinking about one type of code and start
thinking about the other.

Consider Johnny, a hardworking hypothetical developer, writing a new
application. Johnny begins by writing the functional code, maybe even
going so far as using something like UML to fully understand the various
user scenarios that Johnny must code. Good, Johnny. Indeed, good pro-
grammers like Johnny can find a wealth of information out there to help
them write good functional code. The books all address it, the tutorials
address it, and there are many useful published examples to work from.

But, what happens when Johnny realizes the need for error code?
Perhaps he is in the middle of writing or specifying some code object when
he decides that, say, an input needs to be bounds-checked. What does
Johnny do? One choice for Johnny is to stop writing the functional code and
write the error code instead. This requires a context shift inside Johnny’s
developer-head. He must stop thinking about the user scenarios and the
functional code that he is implementing, and start thinking about how to
handle the error. Since handling errors can be complicated, this may take
him some time.

Now, when Johnny returns to the task of writing the functional code,
his mind has to recall what he was thinking about when he last put it down.
This context shift is harder than the first, given the myriad design-decision
details and minute technical details that go into writing any nontrivial pro-
gram. You see the problem: Poor Johnny has had to endure two context
switches to handle a single error. Imagine how many such context switches
happen writing even a small application.

A Selection of JW’s Professorial “Blog” 149

www.it-ebooks.info

www.stickyminds.com
http://www.it-ebooks.info/

Another choice for Johnny would be to postpone writing the error code
in order to avoid the context shift. Assuming Johnny remembers to eventu-
ally get around to writing the error code, he’s probably going to have to
spend some time recalling the nature of the error event he’s trying to write
a handler for. So now Johnny is writing the error code without the benefit of
context. Writing error code is problematic no matter how you face it. And
therefore, a ripe place for guys like me to look for bugs. So now let’s look at
the testing perspective; how do we approach testing error code?

Forcing error messages to occur is the best way to get error code to exe-
cute. Software should either appropriately respond to bad input, or it
should successfully prevent the input from ever getting to the software in
the first place. The only way to know for sure is to test the application with
a battery of bad inputs. There are many factors to consider when testing
error code. Perhaps the most important is to understand how the applica-
tion responds to erroneous input. I try to identify three different types of
error handlers:

• Input filters can be used to prevent bad input from ever getting to the
software under test. In effect, bad inputs are filtered by, for example, a
graphical user interface, and only legal inputs are allowed past the
interface.

• Input checking can be performed to ensure that the software will not exe-
cute using bad input. The simplest case is that every time an input
enters the system, the developer inserts an IF statement to ensure that
the input is legal before it is processed; that is, IF the input is legal,
THEN process it, ELSE display an error message. During this first
attack, it is our goal to ensure that we see all such error messages.

• Exception handlers are a last resort and are used to clean up after the
software has failed as a result of processing bad input. In other words,
bad inputs are allowed into the system, used in processing, and the sys-
tem is allowed to fail. The exception handler is a routine that is called
when the software fails. It usually contains code that resets internal
variables, closes files, and restores the ability of the software to interact
with its users. In general, some error message is also displayed.

Testers must consider each input that the software under test accepts
and focus on erroneous values. The idea here is to enter values that are too
big, too small, too long, too short—which values that are out of the accept-
able range or values of the wrong data type. The major defect one will find
with this approach is missing error cases—input data that the developer did
not know was erroneous or individual cases that were overlooked. Missing
cases almost always cause the software to hang or crash. One should also be
on the lookout for misplaced error messages. Sometimes the developer gets
the error message right but assigns it to the wrong input values. Thus, the
message seems like nonsense for the particular input values submitted.

Finally, of pure nuisance value are uninformative error messages.
Although such messages cause no direct harm to the user, they are sloppy

150 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

and will cast doubt in a user’s mind on the credibility of the software pro-
ducer. “Error 5—Unknown Data” might have seemed a good idea to some
developer, but will cause frustration in the mind of the user who will have
no idea what they did wrong. Whether one is testing an input field in a GUI
panel or a parameter in an API call, one must consider properties of an
input when conducting this attack. Some general properties to consider are

• Input type: Entering invalid types will often cause an error message.
For example, if the input in question is an integer, then enter a real
number or a character.

• Input length: For character (alphanumeric) inputs, entering a few too
many characters will often elicit an error message.

• Boundary values: Every numeric data type has boundary values, and
sometimes these values represent special cases. The integer zero for
example is the boundary between positive and negative numbers.

Be prepared to find some spectacular bugs!

Will the Real Professional Testers Please Step Forward
Reprinted with permission from Software Quality Engineering. See this and more
of James’ work at www.stickyminds.com.

What is it that makes some companies havens for testing talent while
other companies incite anger from their testing ranks? At every testing con-
ference I attend, I hear the same laments:

• “Developers think they are better than us.”
• “Development is always late in delivering the code and it’s Test that

gets blamed when the schedule slips. Everything is always our fault.”
• “Upper management treats us like second-class employees.”
• “How do we get the respect we deserve?”

And so on and so forth.
I’ve listened in on the conversations these folks have with the testing

consultants in attendance. In general, the consultants are full of empathy, as
well as suggestions about how to improve the situation. Most of the solu-
tions I have overheard fall into two categories:

1. You need to improve communication between test, development, and
upper management. This will allow a dialog that will lead to a better
understanding and appreciation of testers.

2. The problem is that testers are not certified. Certification will legitimize
testing as a field and help ensure adequate treatment.

Frankly, and with due respect to the test consulting community, the first
solution sounds a lot like Dr. Phil giving marital advice, and the second
sounds a lot like a labor union.

A Selection of JW’s Professorial “Blog” 151

www.it-ebooks.info

www.stickyminds.com
http://www.it-ebooks.info/

In my opinion, neither psychotherapy nor unionization will solve this
problem. Respect is doled out in the technology sector only when it is
deserved. That’s a good thing. Too many times we hear people in other
industries complain that it doesn’t matter how talented you are, that merit
has nothing to do with respect or advancement. Our goal is to get so good
at what we do, that colleagues and management have no alternative but to
respect us.

So I have been taking notes during the last year on a mission to under-
stand this problem. I accomplished my mission by studying the organiza-
tions in which this problem does not occur, organizations where testers are
respected by developers and management and are afforded pay and career
paths equal to development.

The Common Denominators I Found Are (In No Particular Order)

Insistence Among Testers for Individual Excellence
The companies I studied have a large number of testers who take pride in
their testing prowess. They are good, they know they are good, and they
take great pride in demonstrating their excellence. I hear them speak about
their bugs with as much pride as the developers talk about their code. They
name their bugs and, if questioned, will recount their hunt, their technique,
their insight, and every bit of minutiae that relates to isolating and report-
ing the problem they found. Personal pride in a job well done is not the
exclusive domain of developers. To these testers I say, “Long live your sto-
ries and may your tests never lack targets!”

Primary Concern Focused on the Quality of the Product
Lest you read item number one above and thought those testers arrogant
and self-absorbed, my subjects in this study had one singular focus: maxi-
mum contribution to product success. Whereas the developers can look
with understandable pride at what they put in a product, testers can feel
equal pride for what they keep out of the product. For this, testers deserve
our respect. They deserve our thanks. And forward-looking companies are
generally ready to give it. To those companies who refuse to generously
dole out this respect, perhaps they would be willing to re-insert those bugs
and do without the services performed by their best and brightest testers.

A Corporate Focus on Continuing Education for Testers
I often get invited to teach one-day testing seminars onsite. These courses
are full of testers who are eager to learn. I start each class with one simple
theorem: “Anyone who thinks they can learn testing in a single day is a fool
who has no business testing software.” I invite such people to leave my
course and implore them to leave the discipline. By this rather harsh state-
ment, I stand firm: Testing is not to be taken lightly.

Testing is a pursuit; testing begins, but it never ends. This is a fact of
life: We can never be finished with our testing task. No matter how much

152 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

code we cover, there is always more that remains uncovered. No matter
how many input combinations we apply, there are so many more that we
did not apply. No matter how much we think we excel at testing, there are
more complexities and subtleties that elude our full understanding.

Testers must demand, and receive, the education they so desperately
need. Companies that refuse continuing education benefits—conferences,
onsite or remote courses, books, and (if you are lucky enough to find them)
graduate college courses—should be banned from the practice of software
development. Such companies are a hazard to software users everywhere.
Testing is a challenging intellectual discipline. It not only requires training,
but it also demands it. Companies that refuse to cover these expenses for
testers are negligent.

The Hiring of Degreed Engineers for Test Positions
Testing is not a clerical task. It is an engineering discipline and is best car-
ried out by trained engineers. Obviously, one cannot overgeneralize here.
There are some people who have majored in the arts who make fine testers.
And we always need domain experts to test applications that require spe-
cialized skill. (Imagine testing a flight simulator without a pilot or two on
your team.) But, in general, a computer science degree (or related major) is
necessary. There is background knowledge about algorithms, computa-
tional complexity, graph theory, and data structures that are requisite skills,
building blocks for a deep and well-rounded testing education.

Now, if we could get more universities to actually teach testing, we’d
all be even better off. But testers need to understand development, even if
they don’t practice it on a regular basis.

My Advice Can Be Summarized as Follows
Begin by hiring college graduates who have majored in something technical
and related to computer science (electrical engineering, computer engineer-
ing, physics, math, and so forth). The education level of your testers should
be equivalent to or better than that of your developers.

Insist on continuing-education benefits. Start by showing that the bugs
that managed to slip into the released product could have been found with
more advanced testing techniques, and make a strong bid for training con-
cerning those techniques. You must make the argument, convincingly, that
more training will equate to better software.

Nurture a testing culture in your company that allows you to learn
from the bugs that you find and the bugs that your customers find. Don’t
apologize for the bugs that slip through. Make them a learning opportunity.
Pick them apart and be sure every tester knows why that bug was over-
looked. Bugs are corporate assets because they teach us about what we are
doing wrong. Being proactive about correcting these mistakes will go a long
way toward showing upper management that Test is a crucial aspect of
product development that improves when it is taken seriously. You cannot
expect upper management to take you seriously until you take yourselves

A Selection of JW’s Professorial “Blog” 153

www.it-ebooks.info

http://www.it-ebooks.info/

and your discipline seriously. The more attention you pay to improving the
performance of Test, the more respect you will gain.

Finally, I must note that the trend among software companies is moving
in the right direction. More and more companies are taking Test seriously
and recognizing its value. If you work for a company that treats testers as
second-class employees, other opportunities are out there.

Your fate is in your own hands. Strive for individual excellence, recog-
nize your importance to a project, celebrate the bugs that won’t ship
because of you and your team, and demand the continuing education you
deserve. Respect your discipline and you will gain the respect that your dis-
cipline deserves.

Long live the professional tester!

Strike Three, Time for a New Batter
Reprinted with permission from Software Quality Engineering. See this and more
of James’s work at www.stickyminds.com.

In the late 1970s the software quality problem was all too apparent.
Software was hard to write, hard to maintain, and often failed to meet its
requirements. Even at this early stage in the history of software engineer-
ing, a move was afoot to correct this problem. Beginning with structured
programming, researchers studied better ways to write code. The push for
formal methods began. If you’d only do things more formally, the plea
went, your code would be better! A few even went so far as to make “zero
defects” their Holy Grail. The search was on. Unfortunately, the search still
continues.

Following close on the heels of the formal methods advocates were the
tool vendors. If you’d only use the right tools, they cried, your code would
be better! Many tools have greatly simplified the task of developing soft-
ware. Development organizations spend hundreds of thousands of dollars
on tools. Software is still buggy.

The latest entry into the fray has been the process improvement people.
If you’d only work more carefully, they beg, your code would be better!
Now our managers are as busy as our developers. Developers not only
have software to develop but also make-work reports to write. Software is
still buggy.

This article discusses these three “silver bullets” and exposes their
Achilles heels. I suggest that the answer to the problem must, by definition,
be technical—not managerial—in nature. I end by launching the search for
a fourth proposal.

Formal Methods
Formal methods are a great idea. Essentially, they equate programming a
computer to solving a math problem. You can go about it using a mixture of
creativity, intelligence, and lots of practice solving similar problems.

154 Exploratory Software Testing

www.it-ebooks.info

www.stickyminds.com
http://www.it-ebooks.info/

However, there are a couple of problems with formal methods that can’t be
overlooked.

First and foremost, software developers won’t use them. This puzzles
formal methods advocates to no end. However, it’s fairly plain to the rest of
us: No one can show developers just how to apply formal methods. The
examples in books and papers are far too simple to scale the ideas to real
development problems. Plus, once you get outside your comfort zone, the
formal methods fall apart. You remember how you felt when you learned
calculus after mastering algebra? Algebra problems were easy because
you’d solved hundreds of them. But the methods you used didn’t seem to
apply to calculus problems. All the rules had changed. It turns out this
same situation plagues software problems, too. They can be as different as
algebra and calculus. Why should we be surprised that what works on one
problem is useless on another? Formal methods don’t scale in software
because they don’t scale in mathematics either.

Second, one can use formal methods and still write buggy code. Formal
methods don’t address anything but the algorithm. But we all know that an
algorithm can be correct on paper but fail on a real computer. The problem
is that real computers have space and time limitations, other applications,
and very complex operating systems that must be dealt with by code that
has nothing to do with the main algorithms of an application. Indeed, code
to process inputs and handle errors is often much larger and more complex
than the algorithm that actually gets the main work done. There are no for-
mal methods for handling such code.

Formal methods are important, but they will only take you so far
toward reliable software. Strike one.

Tools
Tools can make the software development task much less painful, but they
cannot guarantee zero defects; in fact, they cannot even guarantee fewer
bugs. Since the tools themselves can be buggy, they create one more
unknown in a project. When a defect is found, is the product or the tool at
fault?

Tools range from simple and indispensable text editors and compilers
to more elaborate environments for analyses and design. Very few outra-
geous claims are made from the developers of editors and compilers—it’s
the design tool vendors that corner that market. What’s more valuable to a
project anyhow, a nicely drawn E-R diagram or a programmer who’s expert
in the target implementation language? Would you buy $100K worth of
tools or hire a person who intimately understands the problem domain in
which you are involved? Tools are great when used properly, but they can
only offer you steep learning curves and limited functionality. Plus, they
bring along a whole new set of bugs to worry about: their own.

You see, if tools really were a silver bullet, they wouldn’t be buggy,
would they? Strike two.

A Selection of JW’s Professorial “Blog” 155

www.it-ebooks.info

http://www.it-ebooks.info/

Process Improvement
The latest attempt at getting the software quality problem under control has
been made by the process improvement people. Obviously, controlling and
improving the software development process is in everyone’s best interest.
However, since software development is a technical problem and process
improvement is a management problem, it simply cannot have a profound
effect on quality. Good organizations can produce bad software. Bad organi-
zations can produce good software.

Furthermore, process improvement initiatives are rarely met with
enthusiasm from rank-and-file technical people. ISO certification is a pain.
SEI assessment is demeaning. Both take away creativity and add manage-
ment overhead. Heck, part of the joy of working in this field is not being
micro-managed. Why would any developer in his or her right mind actu-
ally think this is a good idea?

Well, it is a good idea, but it won’t help appreciably with the quality
problem. I was once a part of a partnership in which a consulting company
that specialized in formal methods was training an SEI level three—on their
way to level five—organization. An example code fragment was used
extensively throughout the training. Neither the formal methods advocates
who wrote the buggy code, nor the mature process organization that stud-
ied the code, noticed that it possessed a fatal flaw. Not even during the
course of proving the code fragment correct was the bug ever discovered.
Why? Because the formal methods people were concerned about math, and
the process people were concerned about documentation. No one was look-
ing at the code! Fortunately, the test organization was paying attention and
the bug was caught.

Management solutions cannot solve technical problems. Strike three.

The Fourth Proposal
What we need is for someone to come up with silver bullet number four.
Except this one shouldn’t be silver. In fact, I think it’s important that pro-
posal number four should be bland-colored, say brown, so that no one
really notices it. It shouldn’t be something so revolutionary (as a gold or
platinum bullet might be) that it makes no sense and people avoid it. It
should be so ordinary that developers can integrate it seamlessly into their
normal pattern of design. It should be so straightforward that developers
remark “this is simple, what’s the big deal?” Not only should it be these
things, it must be in order for it to be used and have some positive industry
impact. Otherwise, it’s just more ivory-tower nonsense that real practition-
ers don’t appreciate.

It turns out that parts of such technology exist, are readily understand-
able by capable developers, and will not fundamentally change the manner
in which software development occurs in an organization. If you are a great
developer now, then you’ll still be a great developer. (This is a fear of great
developers that keeps them from being strong process advocates. They

156 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

know they are not great at filling out forms.) If you are a mediocre devel-
oper, then perhaps you’ll become better. Either way, it is likely that the code
you write will be more understandable and have fewer bugs than it did
before. In future installments of this bimonthly column series, I will survey
many of the techniques that will one day contribute to the fourth, this time
brown, bullet and show how developers and testers can adjust—but not
change—their development process to improve quality and maintainability.

It’s time for a new batter.

Software Testing as an Art, a Craft and a Discipline
The first book2 on software testing set the tone for software testers and soft-
ware testing careers. The title of that book The Art of Software Testing
identified our discipline as a collection of artists applying their creativity to
software quality. Practitioners of software testing and quality assurance
have been sold short by such a label.

Testing is not an art.
Software testing is a far cry from those endeavors that most people

accept as art: painting, sculpture, music, literature, drama, and dance. In my
mind, this is an unsatisfying comparison given that my training as a tester
has been more engineering than art.

Certainly, I’ll agree that, like artists, software testers need to be creative,
but art implies skill without training. Most virtuoso artists were born to the
task, and those of us unlucky enough to have no artistic talent are unlikely
to develop such skill despite a lifetime of practice.

I also understand that two authors attempted to copyright the title The
Craft of Software Testing, acknowledging Myers’s title and also implying a
growth of the discipline from art to craft. This, too, sells testers far short of
the difficulty of their calling. Indeed, the idea of software testing as a craft is
equally unsettling as calling it an art. Craftsmen are carpenters, plumbers,
masons, and landscape designers. Crafts are exemplified by a lack of a real
knowledge base. Most craftsmen learn on the job, and mastery of their craft
is a given as long as they have the drive to practice. Crafts are two parts
dexterity and only one part skill. Indeed, carpenters have no need to under-
stand the biology of trees, only to skillfully mold wood into beautiful and
useful things.

Testing as arts or crafts doesn’t begin to describe what we do; and I’ll
start a fight with anyone who attempts to call it arts and crafts!

I suggest the most fitting title for a book on software testing would be
The Discipline of Software Testing. I would argue that discipline better defines
what we do as testers and provides us with a useful model on which to pat-
tern our training and our careers. Indeed, this is the best reason to call it a

A Selection of JW’s Professorial “Blog” 157

2 Although several collections of testing papers were published as books before Myers’s The
Art of Software Testing in 1979, his was the first book to be written from scratch as a software
testing text.

www.it-ebooks.info

http://www.it-ebooks.info/

discipline: By studying other disciplines, we gain more insight into testing
than using the analogies of arts or crafts.

A discipline is a branch of knowledge or learning. Mastery of a disci-
pline is achieved through training, not practice. Training is different than
practice. Practice requires doing the same thing over and over again, the
key being repetition. One can practice throwing a ball for example and even
though “practice makes perfect,” simply throwing a ball will not make you
a major league pitcher; becoming that good requires training.

Training is much more than just practice. Training means understand-
ing every nuance of your discipline. A pitcher trains by building his muscles
so that maximum force can be released when throwing a ball. A pitcher
trains by studying the dynamics of the mound, where to land his foot for
maximum effect on any given pitch and how to make use of his much
stronger leg muscles to propel the ball faster. A pitcher trains by learning
how to effectively use body language to intimidate batters and runners. A
pitcher trains by learning to juggle, to dance, and to do yoga. A pitcher who
trains to be at the top of his game does many things that have nothing to do
with throwing a ball and everything to do with making himself a better ball
thrower. This is why Hollywood’s “karate kid” waxed cars and balanced on
fence posts; he wasn’t practicing to fight, he was training to be a better
fighter.

Treating software testing as a discipline is a more useful analogy than
treating it as an art or a craft. We are not artists whose brains are wired at
birth to excel in quality assurance. We are not craftsmen who perfect their
skill with on-the-job practice. If we are, then it is likely that full mastery of
the discipline of software testing will elude us. We may become good,
indeed quite good, but still fall short of achieving black belt—dare I say
Jedi?—status. Mastery of software testing requires discipline and training.

A software testing training regime should promote understanding of
fundamentals. I suggest three specific areas of pursuit to guide anyone’s
training:

• First and foremost, master software testers should understand software.
What can software do? What external resources does it use to do it?
What are its major behaviors? How does it interact with its environ-
ment? The answers to these questions have nothing to do with practice
and everything to do with training. One could practice for years and
not gain such understanding.
Software works in a complex consisting of four major categories of soft-
ware users (i.e., entities within an application’s environment that are
capable of sending the application input or consuming its output).
These are (1) the operating system, (2) the file system, (3) libraries/APIs
(e.g., the network is reach through a library), and (4) humans who inter-
act through a UI. It is interesting to note that of the four major cate-
gories of users, only one is visible to the human tester’s eye: the user
interface. The interfaces to the operating system, the file system, and

158 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

other libraries happen without scrutiny. Without understanding these
interfaces, testers are taking into account only a very small percentage
of the total inputs to their software. By paying attention only to the visi-
ble user interface, we are limiting what bugs we can find and what
behaviors we can force.
Take as an example the scenario of a full hard drive. How do we test
this situation? Inputs through the user interface will never force the
code to handle the case of a full hard drive. This scenario can only be
tested by controlling the file system interface. Specifically we need to
force the files system to indicate to the application that the disk is full.
Controlling the UI is only one part of the solution.
Understanding the environment in which your application works is a
nontrivial endeavor that all the practice in the world will not help you
accomplish. Understanding the interfaces that your application pos-
sesses and establishing the ability to test them requires discipline and
training. This is not a task for artists and craftspeople.

• Second, master software testers should understand software faults.
How do developers create faults? Are some coding practices or pro-
gramming languages especially prone to certain types of faults? Are
certain faults more likely for certain types of software behavior? How
do specific faults manifest themselves as failures?
There are many different types of faults that testers must study, and this
forum is too limited to describe them all. However, consider default
values for data variables as an example. For every variable used in a
program, the variable must be first declared and then given an initial
value. If either of these steps is skipped, a fault exists for testers to look
for. Failure to declare a variable (as is the case with languages that
allow for implicit variable declaration) can cause a single value to be
stored in multiple variables. Failure to initialize a variable means that
when a variable is used, its value is unpredictable. In either case, the
software will fail eventually. The trick for the tester is to be able to force
the application to fail and then be able to recognize that it has failed.

• Third, master software testers should understand software failure. How
and why does software fail? Are there symptoms of software failure
that give us clues to the health of an application? Are some features sys-
temically problematic? How does one drive certain features to failure?

And there is more, always more to learn. Discipline is a lifelong pursuit.
If you trick yourself into thinking you have all the answers, mastery will
elude you. But training builds knowledge, so the pursuit itself is worth-
while whether or not you ever reach the summit.

A Selection of JW’s Professorial “Blog” 159

www.it-ebooks.info

http://www.it-ebooks.info/

Restoring Respect to the Software Industry
Fifty plus years of software development has resulted in one overwhelming
truth: Our industry develops crappy applications. We’ve made insecurity
and unreliability the norm.

It’s true and as an industry, we can no longer deny it. You can look at
studies such as that performed at the National Institute of Standards and
Technology (NIST) in 2002 that implicate defect removal as a major cost of
software deployment. (The study is available at
www.mel.nist.gov/msid/sima/sw_testing_rpt.pdf.) Or you could simply
take a look at pop tech culture and observe that our buggy software is creat-
ing new dictionary entries: Spam, phishing, and pharming are only a sam-
pling. Are bad apps so prevalent that we have resorted to assigning
amusing monikers to our failure to protect our users? Is this a situation that
any self-respecting software professional can be proud of?

The answers are clearly yes to the first and a resounding no! to the sec-
ond. Investigating why this is and what we might do about it is one of the
most worthwhile tasks that our industry can undertake. In fact, it may be
the very thing that saves us from creating the next generation of security
holes and quality problems to plague our users.

This article begins this investigation in the hopes that it will be joined
by an enthusiastic army of quality-minded software developers.

The Well-Intentioned but Off-Target Past
Past attempts at writing secure and reliable code have been decidedly front-
loaded. By this, I mean that the focus of software development practices has
been on specification, architecture, and development: The early parts of the
software development life cycle. The intuition being that we need to focus
on preventing defects because “quality cannot be tested in.”

This concept was so intuitively pleasing that many software construc-
tion paradigms picked up on it beginning as early as the 1970s: structured
analysis/structured design, clean room, OOA/OOD/OOP, and aspect-
oriented programming are some examples.

Software defects continued and so did the process communities’ ill-
fated attempts to squash them: design by contract, design patterns, RUP,
and yes, oh yes, there were more.

Finally, we woke up and realized that such front-loaded processes sim-
ply don’t work. The idea that we can specify requirements and plan tests in
advance when reality was changing too fast to predict hit our industry
square in the face.

And we answered with more methodologies: Extreme (spell it what-
ever way you wish) programming and agile development took center stage.
Progress? Hmm. Well, the jury is still out, but I am not holding out much
hope. You see the problem with all of these methodologies is that they teach
us the right way to do things.

160 Exploratory Software Testing

www.it-ebooks.info

www.mel.nist.gov/msid/sima/sw_testing_rpt.pdf
http://www.it-ebooks.info/

Now granted, many industries have figured out the right way to do
things. Artists study Picasso, Rembrandt, and the many other masters of
their craft. Musicians have no lack of masters to study: Beethoven, Handel,
Mozart, and Bach are only a few. Architects can study the pyramids, the Taj
Mahal, and Frank Lloyd Wright for that matter. All these professions have
existed for long enough that there are many, many examples of people get-
ting it right so that those wishing to follow in their footsteps and master the
craft have examples to study.

But it is our sad misfortune (and grand opportunity) to be in the soft-
ware game so early that no such examples of perfection or inspiration exist.
If they did, we’d be studying these “classic” programs so that the new gen-
eration of programmers could learn the discipline from those that went
before them.

Moving On to Better Ideas
So is it even possible to construct a software development methodology
without prior knowledge of how to do software right? I say no and the evi-
dence I present is that software is getting no better. Indeed, I would argue
that the complexity of the systems we build is far outpacing the small
advances that any of the current menu of development methodologies offer
our industry.

Throw them all away and face the fact that we have no idea how to
build a high-quality software system of any reasonable size.

When pop tech culture stops naming our bugs and the other headaches
we create for our users, that may be an indication that we are progressing.
But until then, we need a better plan.

We cannot study success in an environment where only failure exists.
So I propose, instead, that we study failure and build our development
processes rear-loaded.

Let me explain what I mean by that: There is no more clear indication of
what we are doing wrong than the bugs we write, fail to detect, and then
ship in our products. But all of the past methodologies treat bugs as some-
thing to avoid, something to hush up.

This is unfortunate and I propose we stop treating bugs as a bad thing. I
say we should embrace our bugs as the only sure way to guide them to
extinction. There is no better way to improve than by studying the very
thing that makes our industry the laughing stock of engineering disciplines.

We should be studying our bugs.

A Process for Analyzing Security Holes and Quality Problems
I propose starting with bugs and working backward toward a process that
just might work. Here’s how I think we should proceed:

Step 1: Collect all the bugs that we ship to our customers (paying special
attention to security vulnerabilities). Instead of treating them like

A Selection of JW’s Professorial “Blog” 161

www.it-ebooks.info

http://www.it-ebooks.info/

snakes that might jump out and bite us, consider them corporate
assets. After all, they are the surest indication of our broken
processes, misdirected thinking, and mistakes that we have made.
If we can’t learn from what we are doing wrong, shame on us. If
we refuse to admit that we are doing wrong, then we have a big-
ger problem.

Step 2: Analyze each of these bugs so that we (1) stop writing them, (2)
get better at finding them, and (3) understand how to recognize
when they occur.

Step 3: Develop a culture in our organization in which every developer,
tester, and technician understands every bug that we’ve ever
written.

Step 4: Document the lessons learned. This becomes the basis for a body
of knowledge about the bugs we write and the basis for a new set
of methodologies that are aimed squarely at preventing our most
egregious mistakes.

We can do this by questioning our bugs. I think the following three
questions are a good start and will teach us a great deal about what we are
doing wrong. For each bug we ship, we should ask ourselves:

1. What fault caused this bug in the first place?
The answer to this question will teach developers to better understand
the mistakes they are making as they write code. When every developer
understands their own mistakes and the mistakes of their colleagues, a
body of knowledge will form inside our development groups that will
reduce mistakes, help guide reviews and unit tests, and reduce the
attack surface for testers.
The result will be better software entering test.

2. What were the failure symptoms that would alert us to the presence of
this bug?
Remember that I am proposing to study bugs that shipped, so the
assumption is that somehow the bug slipped by or was found and not
fixed purposefully. In the former case, testers will create a body of
knowledge and tools about how to better isolate buggy behaviors from
correct behaviors, and in the latter the entire team will learn to agree on
what an important bug really is.
The result will be better software shipping to our customers.

3. What testing technique would have found this bug?
For those bugs that were totally missed in test, we need to understand
what test would have found the failure and helped us diagnose the
fault. Now we are adding to the testing body of knowledge with tests
that actually work to find important bugs.
The result will be more effective tests and a shorter test cycle.

162 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

What I am proposing here is that because we cannot possibly under-
stand how to do software right, let’s understand how we’re doing it wrong
and simply stop doing it that way. The resulting body of knowledge will
not tell us what to do to develop software; it will tell us what not to do.

Perhaps we can follow this rear-loaded process using our existing front-
loaded methodologies and meet somewhere in the middle.

Now that’s what I call progress toward a discipline we can all be
proud of.

Let the celebration of bugs begin!

A Selection of JW’s Professorial “Blog” 163

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX C
An Annotated Transcript of JW’s
Microsoft Blog

“If you can’t say anything nice, don’t say nothing at all.”
—Disney’s Thumper (quoting his father)

Into the Blogoshere
As a former professor, I wasn’t thrilled when the blogging revolution
occurred. To one used to carefully researched academic papers that required
anonymous peer review, technical editing, and editorial approval, blogging
seemed an unprofessional and chaotic approach to publishing. Any idiot
with an opinion, educated or not, could publish anything he or she wanted.

But the twenty-first century finally caught up with me, and I did a
number of guest posts for various Microsoft blogs. When my boss first
asked me to start blogging regularly, it was obvious why. We have a prod-
uct to sell, and he thought my blog would drive a lot of interest.

That was his plan, and part of it worked out well. My blog has drawn a
lot of traffic and sits in a place of respect among Microsoft developers
(although nowhere near the top of the pile). But I didn’t use it to sell any-
thing, I used it like the rest of the idiots in the blogosphere, to spout off
about my favorite subject: software quality. I wanted to use it to drive the
conversation to a higher level rather than to sell tools, and whether I have
succeeded is not for me alone to decide.

I’ve gotten a lot of input and comments about my blogging. Some are
posted on the blog itself at http://blogs.msdn.com/james_whittaker, but
most were emailed to me or occurred in hallway conversations here and at
conferences and didn’t get documented. Some are additive to the subject I
was blogging about, and some pointed out just how misguided I was. And
a few were complaints that I was portraying my employer in a less-than-
glowing light (one such from a corporate VP, no less). I’ve tried to capture
the essence of those comments in this annotated transcript that appears
here in the order I wrote them.

www.it-ebooks.info

http://blogs.msdn.com/james_whittaker
http://www.it-ebooks.info/

Finally, given that I have left Microsoft, the blog on MSDN is likely to
disappear, and this will be the only place where they are preserved. (Any
contemporary context required to help you understand these postings is
provided in italic.)

July 2008
Two years before this blog started, I joined Microsoft as a security architect in our
core operating system division. Security is not something that is easily talked
about, and my colleague Michael Howard had the security space covered so well
that I didn’t bother. It was a constant source of annoyance that people were asking
me where they could find my blog. Now, it is the consummate irony that I am going
around telling people where to find it, even when they don’t ask.

Before We Begin
Okay, here it is. I submit.

I’ve been bugged about blogging for years. “Where’s JW’s blog?” “Why
doesn’t JW blog?”…and so forth and et cetera. Well, the blog is here and
why I haven’t been blogging up to now is no longer relevant so I won’t bore
you with it. Instead, here’s the blog and I’ll do my best to ensure that it’s
worth the wait.

For those of you familiar with my writing, I plan to update some of my
more dated work (history of testing, testing’s ten commandments, and so
forth) and preview some of the information that I will be publishing in
paper and book form in the future. Specifically, I now (finally) have enough
notes to revise my tutorial on manual exploratory testing: How to Break
Software and will be embarking on that effort soon. This blog is where I’ll
solicit feedback and report on my progress.

For now, here’s an update on what’s happening, testing-wise, for me at
Microsoft:

• I am the Architect for Visual Studio Team System — Test Edition. That’s
right, Microsoft is upping the ante in the test tools business and I find
myself at the center of it. What can you expect? We’ll be shipping more
than just modern replacements for tired old testing tools. We’ll be ship-
ping tools to help testers to test: automated assistance for the manual
tester; bug reporting that brings developers and testers together instead
of driving them apart; and tools that make testers a far more central
player in the software development process. I can’t wait!

• I am the Chair of the Quality and Testing Experts Community at Microsoft.
This is an internal community of the most senior testing and quality
thought leaders in the company. We kicked off the community with
record-breaking attendance (the most of any of Microsoft’s technical
network communities) at our inaugural event this past spring where
some of our longest-tenured testers shared a retrospective of the history

166 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

An Annotated Transcript of JW’s Microsoft Blog 167

of testing at Microsoft followed by my own predictions for the future of
the discipline. It was a lively discussion and underscored the passion
for testing that exists at this company. In this quarter’s meeting we’re
doing communal deep dives into the testing-related work that is com-
ing out of Microsoft Research. MSR, the division responsible for Virtual
Earth and the Worldwide Telescope also builds test tools! I can’t wait to
ship some of this stuff!

• I am representing my division (DevDiv) on a joint project with
Windows called a Quality Quest. Our quest is concerned with quality,
specifically, what we need to do to ensure that our next generation of
platforms and services are so reliable that users take quality for
granted. Sounds like I took the blue pill, doesn’t it? Well, you won’t
find us dancing around acting like our software is perfect. Anyone who
has ever heard me speak (either before or after I joined Microsoft) has
seen me break our apps with abandon. In this Quest, we’ll leave no
stone unturned to get to the bottom of why our systems fail and what
processes or technology can serve to correct the situation.

So here it is: the start of a blog that I hope will allow me to share my
testing enthusiasm with a wide variety of folks who both agree and dis-
agree with my strategy and tactics. Perhaps, just perhaps, enough of us will
join the dialog to help add to the collective voice of those who just want
software to work.

PEST (Pub Exploration and Software Testing)
Anyone who has read Chapter 6 of How to Break Software knows my fond-
ness of mixing testing with pubs. Many of the training and challenge events
I designed for my students actually took place in a pub. Somehow the pub
atmosphere tore down walls and inhibitions and helped focus the conversa-
tion on testing. There were simply none of the usual office distractions to
hold people back, and pubs just give me a Zen feeling that few other places
can match. Perhaps this effect can be achieved in other settings but I haven’t
bothered trying those places. Indeed, the only other place I’ve ever tried is a
soccer pitch, but that blog post can wait. (Let me know if you’re interested.)

How wonderful it was to experience a group in England who have for-
malized it: PEST is Pub Exploration of Software Testing…that’s right, a
group of visionary. (Would they be anything else in my mind?) England-
based testers meet monthly (or thereabouts) in a pub to talk testing and
challenge each other’s knowledge and understanding of the subject of
exploratory testing. The end result is clearer-headed (at least after the hang-
over the next day) thinking about testing, techniques, automation, and
many other subjects that they imbibe.

I had the pleasure of joining them July 17 at a pub just outside Bristol.
Apparently in a nod to my work, the focus of this PEST was bug finding.
They set up a total of four breaking stations: (1) a computer with the
PEST website (still under development), (2) a vending machine (released

www.it-ebooks.info

http://www.it-ebooks.info/

product), (3) a child’s video game (released product), and (4) a machine
running an app intentionally seeded with bugs. As attendees filed in (~40 in
all), they were given one of 10 different beer mats and people with match-
ing mats were teamed up for exploratory testing sessions. I helped adjudi-
cate one of the stations and rang an old style hotel bell with every verified
bug. The same happened at the other stations. Each team tested all four
products for identical periods of time in a round-robin fashion, and at the
end of the night, prizes were given for the team with the most bugs, the
most severe bug, and the best test case.

The only problem is that as a designated passenger (and all the duties
that entails on behalf of the designated driver), I was having too much fun
to take notes and don’t have the official score sheet. Can anyone who
attended please report the results for us? However, I remember well the
quote of the night came from Steve Green of Labscape: “It’s quite strange
actually, testing with other people.”

Steve (who clearly excelled in exploratory testing to the point that I’d
hire him without further interview), please clarify for us whether the help
was welcome? As a lone Jedi of the Testing Force…weigh in on the whole
paired (or in this case, teamed) vs. solo testing debate!

PEST is a fantastic idea. I’m glad I had a ride home after it though.

Measuring Testers
This post stands as one of the most viewed and commented upon posts I have writ-
ten. It resonated with a lot of testers inside and outside the company. Mostly the
comments were positive, but many testers hated the idea of “being measured at all
and in any way whatsoever.” But that’s what performance reviews are! Sorry, but
measuring people is a way of life in the business world; why shouldn’t we enter into
a discussion on how to go about measuring in a meaningful way? And fundamen-
tally, our bug-finding ability is nothing unless we wield it to reduce the number of
bugs that get written. That’s the real point of the post anyway, it’s not about meas-
uring…it’s about improvement.

Yeah, I know…scary subject. But as it is review time here at the empire,
this is a subject that has been front and center for both testers and the man-
agers they report to, so I’ve been asked about it a lot. I always give the same
advice to test managers, but I’ve done so with much trepidation. However, I
suddenly feel better about my answer because I’m in good company.

Before I give it away, let me tell you why I am feeling better about my
answer. I came across a quote today while looking at the slides that Jim
Larus is using for his keynote tomorrow at ISSTA (the International
Symposium on Software Testing and Analysis). The quote captures exactly
my advice to managers here at Microsoft who ask me how to rate their
SDETs. Moreover, the quote comes from Tony Hoare who is a professional
hero of mine and a friend of my mentor Harlan Mills (and a Knight, a
Turing Award winner and Kyoto Prize winner). If Tony had said the
opposite, I would have a whole lot of apologizing to do to the many test

168 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

managers I’ve given this advice to. Whenever we disagree, you see, I am
always wrong.

So here’s my advice: don’t count bugs, their severity, test cases, lines of
automation, number of regressed suites, or anything concrete. It won’t give
you the right answer except through coincidence or dumb luck. Throw
away your bug finding leader boards (or at least don’t use them to assign
bonuses), and don’t ask the other testers in the group to rate each other.
They have skin in this game, too.

Instead, measure how much better a tester has made the developers on
your team. This is the true job of a tester, we don’t ensure better software,
we enable developers to build better software. It isn’t about finding bugs
because the improvement caused is temporal. The true measure of a great
tester is that they find bugs, analyze them thoroughly, report them skill-
fully, and end up creating a development team that understands the gaps in
their skill and knowledge. The end result will be developer improvement,
and that will reduce the number of bugs and increase their productivity in
ways that far exceeds simple bug removal.

This is a key point. It’s software developers that build software, and if
we’re just finding bugs and assisting their removal, no real lasting value is
created. If we take our job seriously enough, we’ll ensure the way we go
about it creates real and lasting improvement. Making developers better,
helping them understand failures and the factors that cause them will mean
fewer bugs to find in the future. Testers are quality gurus and that means
teaching those responsible for anti-quality what they are doing wrong and
where they could improve.

Here’s Tony’s exact words:
“The real value of tests is not that they detect bugs in the code,
but that they detect inadequacies in the methods, concentration
and skill of those who design and produce the code.”
— Tony Hoare 1996
Now replace the word “tests” with “testers” and you end up with a

recipe for your career. I imagine I’ll be examining this subject more in future
posts. Follow the link above to get Jim Larus’ take on this as well as a
guided tour through some of MSRs test technology, some of which is wide
of Tony’s mark and some a bit closer.

By the way, note my use of the term “empire” to describe Microsoft. I
got a few scathing complaints about this. Funny enough, none of the com-
plaints came from Microsoft employees. Can it be that we actually take the
term “empire” as a compliment?

Prevention Versus Cure (Part 1)
I wrote these next five blog posts over a two-day period while sitting at the offices of
Stewart Noakes’s company TCL in Exeter, England. I had a visa issue that pre-
vented me from taking a scheduled flight to India and was stuck in a sunny and
warm Exeter and hung out with Stewart, drank a lot of ale, and talked about test-
ing almost nonstop. This series on Prevention Versus Cure was a reader favorite,

An Annotated Transcript of JW’s Microsoft Blog 169

www.it-ebooks.info

http://www.it-ebooks.info/

not far behind the Future series. Many readers said they were funny. I credit
Stewart and delicious English ale for that.

Developer testing, which I call prevention because the more bugs devs
find the fewer I have to deal with, is often compared to tester testing, which
I call detection. Detection is much like a cure, the patient has gotten sick
and we need to diagnose and treat it before it sneezes all over our users.
Users get cranky when they get app snot all over them, and it is advisable
to avoid that situation to the extent possible.

Developer testing consists of things like writing better specs, perform-
ing code reviews, running static analysis tools, writing unit tests (running
them is a good idea too), compilation, and such. Clearly developer testing is
superior to detection for the following reasons:

1. An ounce of prevention is worth a pound of cure. For every bug kept
out of the ecosystem, we decrease testing costs and those (censored)
testers are costing us a (censored) fortune. (editor note to author: the
readers may very well detect your cynicism at this point, suggest tone-
down. Author note to editor: I’m a tester and I can only contain my cyn-
icism for a finite period; that period has expired.)

2. Developers are closer to the bug and therefore can find it earlier in the
lifecycle. The less time a bug lives, the cheaper it is to remove. Testers
come into the game so late, and that is another reason they cost so
much.

Tester testing consists of mainly two activities: automated testing and
manual testing. I’ll compare those two in a future post. For now, I just want
to talk about prevention versus cure. Are we better to keep software from
getting sick or should we focus on disease control and treatment?

Again the answer is obvious: Fire the testers. They come to the patient
too late after the disease has run rampant and the cure is costly. What the
heck are we thinking hiring these people in the first place?

To be continued.

Users and Johns
Lee Copeland hates this post, and I like Lee. But I think my added insight of the
John is funny. In the immortal words of Larry the cable guy, “That’s funny; I don’t
care who you are.”

Does anyone out there know who was the origin of the insight that the
software industry and the illegal drug trade both call their customers users?
Brian Marick was the person I stole it from but as far as I know he doesn’t
claim it.

Anyway, it’s an interesting insight. There are so many sweet terms we
could use for those creatures who so consistently pay our salary and mort-
gages. My favorite is client. It has such a nice professional, mysterious ring
to it. But perhaps we are in good company with the drug dealers. We get
the user addicted to our functionality to the point that they overlook its

170 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

downside and they come gagging for another fix (uh, version, don’t forget
to plug the rush-hole!).

I suppose we should be pleased that it stopped with “user.” I, for one,
would quit this industry if we start calling them “johns.” Being associated
with the drug dealers is one thing, but pimps? That’s where I draw the line.

Ode to the Manual Tester
This is the post that really cemented my love affair with manual testing. I com-
plained loudly around the halls at Microsoft that Vista suffered because its testing
was overautomated. A few good manual testers would have gone a long way. The
manual tester provides a brain-in-the-loop that no automation can match. Humans
can’t test faster, but they can test smarter. If you’ve read this entire book without
understanding the depth of my passion for manual testing, you haven’t really read
this book.

Anyone who has ever seen me present knows my fondness for bug
demos. I have made the point for years that there is a lot to learn from the
mistakes we make, and studying past bugs represents one of the most pow-
erful ways to learn about preventing and detecting new ones. But this post
won’t belabor that point. Instead, I want to open a discussion about the var-
ious ways in which we treat bugs. And I will end up with a point that many
people won’t like: that manual detection beats automation. But let’s not get
ahead of ourselves, because that point will be made with more than one
caveat.

Bugs are a necessary byproduct of human endeavor. We make mistakes
and software isn’t the only human-produced product that is imperfect. So
in many ways we are stuck with bugs, but that doesn’t mean that preven-
tion techniques aren’t important. We can and should try our best not to intro-
duce impurities into the software ecosystem. Failing that our next line of
defense is detection and removal. Clearly detection is inferior to prevention
(the whole ounce versus pound debate), but since we humans are stuck with
it, we should try to detect as many bugs as possible and as soon as possible.

The first chance of detection is had by developers since they are there at
the very moment of creation. (The same can be said of architects and
designers so switch those roles in this argument as you will, it does not
change the outcome.) In general, the tools of the trade here are first manual
inspection of the written code followed by automated static analysis. I
have no doubt that developers find and destroy many bugs as they write,
review, and refine their code. Another round of bugs is likely found in the
process of compilation, linking, and debugging.

The number, type, and relative importance of the bugs found and fixed
during these developer rituals remains unknown but in my opinion, these
are the easiest and lowest hanging fruit in the bug forest. They are the bugs
that surface solely on the basis of the code alone. The really complex bugs
that require system context, environment context, usage history, and so
forth are mostly out of bounds. Simply put, developers can’t find most of
these kinds of bugs.

An Annotated Transcript of JW’s Microsoft Blog 171

www.it-ebooks.info

http://www.it-ebooks.info/

Enough bugs escape the net to necessitate the next round of bug find-
ing. Round two is still mainly in the hands of developers (often with tester
backup): unit testing and build verification/smoke testing. The key differ-
entiator here is that the software is executing as opposed to just sitting there
to be read. This opens the door to a whole new category of bugs as execu-
tion context is brought to bear on the problem.

After years of performing, observing, and studying unit test activities, I
have to say I am unimpressed. Is there anyone out there that is really good
at this? Developers, who are creators at heart, approach it unenthusiasti-
cally, and testers generally consider it not to be their job. Lacking clear own-
ership the reality is that if the code runs from end to end on whatever input
scenarios come to mind first, it gets checked into the build. Again, lacking
serious study we don’t know the relative importance of the bugs found
during this second phase of detection, but given the fact that so many slip
through to the next phase, it can’t be working as well as it could. My own
opinion is that with such little time actually spent doing unit testing, no real
software state gets built up, nor do realistic user scenarios actually get run.
Our expectations should be low.

Testers own the third shot at detection. At Microsoft where I now work
and the dozens of companies I consulted for prior, it’s test automation that
reigns supreme. I have to wonder if years ago some phenom SDET at
Microsoft created an automation platform, found a boat load of bugs with
it, got some huge promotion because of it, and as a result word got out that
automation is the way to improve your career. Too bad. Although I salute
the many fine automators at this company, we have to face facts that
despite all our automation heroics, bugs…and I mean important, customer-
found bugs…are slipping through. Bugs that, in my opinion, can’t or won’t
be found with automation.

Automation suffers from many of the context problems that I men-
tioned earlier (environment, state build up, and such.) but its actual
Achilles’ heel is its inability to catch most failures. Unless a crash occurs, an
exception is thrown or an assert is triggered, automation won’t notice the
failure. Granted: automation is important and it finds a lot of bugs that
need to be found, but we have to realize that ten thousand test cases a day
isn’t as good as it sounds if you don’t notice if any of them fail.

The only way to catch many of the bugs that make their way to our cus-
tomers’ desktop is by creating an environment that looks like our cus-
tomers’ environment, running the software to build up data and state and
being there to notice when the software actually fails. Automation can play
a role in this, but in 2008, it’s manual testing that is our best weapon.
Frankly, I don’t see the balance of power shifting away from the manual
tester in the near term. If I am right and manual testing is our best chance to
find the most important bugs that put our customers at risk, we should be
spending a lot more time thinking about it and perfecting it.

I’d like to hear your opinion. What say you to the prospects for manual
testing?

172 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

Prevention Versus Cure (Part 2)
I got this comment from a test manager at Intel after I posted this one: “After hav-
ing a team concentrate almost exclusively on automation and bragging about our
1,500 automated tests, our application crashes the first time fingers hit the key-
board. Manual testing reigns when you want to find bugs customers will see.”

I like this guy.
Ok, re-hire the testers.
Perhaps you’ve noticed but the whole prevention thing isn’t working so

well. Failures in software are running rampant. Before I talk about where
we should invest our resources to reverse this trend, I want to talk about
why prevention fails.

I see a number of problems, not the least of which is that good require-
ments and specifications seldom get written and when they do they often
fall out-of-date as the focus shifts to writing and debugging code. We’re
working on that problem in Visual Studio Team System but let’s not get
ahead of ourselves. The question in front of us now is why prevention fails.
It turns out, I have an opinion about this:

The developer-makes-the-worst-tester problem. The idea that a devel-
oper can find bugs in their own code is suspect. If they are good at finding
bugs, then shouldn’t they have known not to write the bugs in the first
place? This is why most organizations that care about good software hire a
second set of eyes to test it. There’s simply nothing like a fresh perspective
to detect defects. And there is no replacement for the tester attitude of how
can I break this to complement the developer attitude of how can I build this.

The software-at-rest problem. Any technique such as code reviews or
static analysis that don’t require the software to actually run, necessarily
analyzes the software at rest. In general this means techniques based on
analyzing the source code, byte code, or the contents of the compiled binary
files. Unfortunately, many bugs don’t surface until the software is running
in a real operational environment. Unless you run the software and provide
it with real input, many bugs will simply remain hidden.

The no-data problem. Software needs input and data to execute its
myriad code paths. Which code paths actually get executed depends on the
inputs applied, the software’s internal state (the values of the data struc-
tures and variables), and external influences like databases and data files.
It’s often the accumulation of data over time that causes software to fail.
This simple fact limits the scope of developer testing which tends to be
short in duration…too short to catch these data accumulation errors.

Perhaps tools and techniques will one day emerge that allow develop-
ers to write code without introducing bugs. Certainly it is the case that for
narrow classes of bugs like buffer overflows that developer techniques can
and have driven to near extinction. If this trend continues, the need for a
great deal of testing will be negated. But we are a very long way, decades in
my mind, from realizing that dream. Until then, we need a second set of
eyes, running the software in an environment similar to real usage and
using data that is as rich as real user data.

An Annotated Transcript of JW’s Microsoft Blog 173

www.it-ebooks.info

http://www.it-ebooks.info/

Who provides this second set of eyes? Software testers provide this
service, using techniques to detect bugs and then skillfully reporting them
so that they get fixed. This is a dynamic process of executing the software in
varying environments, with realistic data and with as much input variation
as can be managed in the short cycles in which testing occurs.

In part 3 of this blog series I will turn my attention to tester testing and
talk about whether we should be doing this with automation or with man-
ual testing.

Hail Europe!
I’ve been accused often of being a Europhile, and I have to admit that it’s true. I
admire Europe’s culture, history, and generally find its people likable. (Even if they
don’t always feel the same way about me…I’ve been told on more than one occasion
that my speaking style is a little too forward for more conservative Europeans…I’d
believe it except that they keep inviting me back). From a testing point of view, I
have to say that, apologies to America and Asia, Europe takes testing to a level of
respectability that we have not yet reached.

I had the extreme privilege to speak to a crowd of test practitioners
based in the UK last week. The event was hosted by Transition Consulting
(TCL) and boasted some of the UK’s top consumers of testing services. A
list of those companies is posted here, but you’ll have to scroll down a bit
because Stewart Noakes has been an active blogger recently.

One comment that some of my American readers might not like:
European test audiences tend to be a lot more aware and a lot more
involved in this discipline of testing. Everyone seemed familiar with my
writing and the writing of people like Beizer, Kaner, and Bach. I was espe-
cially surprised at the discussion of the history of the Kaner and Beizer
school’s of thought in the early ’90s and the general knowledge of both
industry and academic testing conferences and publications. There seems to
be more eagerness to delve into the field and its history here than I gener-
ally see in my own country. These folks are really well read!

Proponents of certification might point to that as a reason since certifi-
cation of testers seems far more popular in Europe. Does certification help
spark people’s passion for testing? Test training in general seems more pop-
ular in Europe.

I think it might have something to do with the American bias toward
test automation, particularly Microsoft’s. Most in our test community are
SDETs and approach testing from a very developer-oriented perspective.
They may be less inclined to think of themselves as testers and less inclined
to involve themselves in its culture and history. That’s a shame. (Obviously
there are many counterexamples at Microsoft but I think this is generally
true among the population of tens of thousands of us.)

I am probably going to get in a lot of trouble for this post. But now that
I’ve mentioned certification, I have a hankering to blog about that now. I
can almost guarantee that what I have to say about certification would
draw some fire.

174 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

The Poetry of Testing
Okay. I admit it. I was in the pub a little too long to be blogging at this point. But I
stand behind everything in this post! This is also one of the first indications of my
second Euro-inspired passion: My favorite sport is soccer. Blame it on my kids; I
never liked the sport either until they started playing it. Now it’s an addiction, and
since the Champions League is a lunchtime event here in Seattle, you can find me
and all my foreign friends at the local pub for every single game.

God Save the Queen! (A curious statement…from my American point
of view. But given what history has recorded of certain of England’s kings
I’ll grant the gender bias. Anyway, Save Her all the same as she presides
over a country of such glorious breweries!)

If you haven’t guessed it already, I’m visiting England. I’m also in a
pub. (You probably guessed that, too.) And I just met with a half dozen or
so local testers who convinced me (with the offer of free pints) to meet for a
book signing. I almost never turn down a signing and I never turn down
free beer, especially at the current exchange rate.

Upon parting, they urged me to turn our conversation into a blog post.
Here it is. I hope it doesn’t embarrass me in the morning.

A single signature seeker was a developer. When I asked him why he
bought my book, he answered that he wanted to make sure his testers
weren’t successful with the “tricks” I preached in it. He intended to frus-
trate them by writing code that wouldn’t fail that way.

I smiled and told him that if this was a soccer, excuse me…football,
game I would rip my shirt off and celebrate my goal. He looked at me
funny. I think the testers got it. I bet you do, too.

He went on to describe why developing code was better than testing it.
He talked about the challenge of wrestling with the compiler and deftly
parrying the attempts of the IDE and the operating system to thwart him on
his mission. It was a battle to him, a conquest. He was a Knight, fighting for
User and Binary.

It was a great story, and I didn’t get permission to identify him so I
won’t, but his passion was fantastic, and the world is a better place because
he’s in software development.

But if developers are the fighters, I think of myself and my fellow
testers as the bards. Testing, to me, is poetry. As I test software I have
visions of inputs mingling with data, some are stored internally; some are
used temporarily and discarded. I hear music playing as inputs move
through the app and find their way to a data structure or get used in some
computation. It helps me to think about the inputs in this way; it helps me
understand what the application is doing with the input I give it, and that
in turn helps me to think of ways to break it. Every potential sour note rep-
resents some possible way the developer may have screwed up. Imagine
your app processing input. Listen to the poetry it recites; it will tell you
when it’s going to fail.

I find this especially true of testing web apps. I envision in my mind the
formation of SQL queries that my inputs cause the application to make. I

An Annotated Transcript of JW’s Microsoft Blog 175

www.it-ebooks.info

http://www.it-ebooks.info/

form impressions in my mind of the HTML traffic that is transmitted from
client to server and the response back again. What is the application doing?
Where is the data going and with what purpose? These are deep, existential
questions worthy of the bard in all testers. And they find bugs. The more I
can picture the internal processes going on in the application, the better I
am able to understand how the developer might have made a mistake.

The music of the pounce is what makes it all worthwhile. That moment
in which it becomes obvious that the software can do nothing but fail. It’s
euphoria; the equivalent to scoring a winning goal. But, please, keep your
shirt on. That’s a cautionable offense in football, and we don’t want devel-
opers to be brandishing yellow cards at us.

Prevention Versus Cure (Part 3)
After this post, I got loads of email from Microsoft testers who “came out of the
closet” as manual testing sympathizers. Automation has taken precedence over
manual testing at Microsoft much the same as development presides over testing.
There’s just something in the genetics of the field that makes us admire coders. But
the amount of manual testing that gets done is amazing to me. People don’t talk
about it because it doesn’t help their review. But people do it because it helps their
software.

Now that the testers are once again gainfully employed, what shall we
do with them? Do we point them toward writing test automation or ask
them to do manual testing?

First, let’s tackle the pros and cons of test automation. Automated test-
ing carries both stigma and respect.

The stigma comes from the fact that tests are code and writing tests
means that the tester is necessarily also a developer. Can a developer really
be a good tester? Many can, many cannot, but the fact that bugs in test
automation are a regular occurrence means that they will spend significant
time writing code, debugging it, and rewriting it. One must wonder how
much time they are spending thinking about testing the software as
opposed to writing the test automation. It’s not hard to imagine a bias
toward the latter.

The respect comes from the fact that automation is cool. One can write a
single program that will execute an unlimited number of tests and find
bugs. Automated tests can be run and then rerun when the application code
has been churned or whenever a regression test is required. Wonderful!
Outstanding! How we must worship this automation! If testers are judged
based on the number of tests they run, automation will win every time.
If they are based on the quality of tests they run, it’s a different matter
altogether.

The kicker is that we’ve been automating for years, decades even, and
we still produce software that readily falls down when it gets on the desk-
top of a real user. Why? Because automation suffers from many of the same
problems that other forms of developer testing suffers from: it’s run in a

176 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

laboratory environment, not a real user environment, and we seldom risk
automation working with real customer databases because automation is
generally not very reliable (it is software after all). Imagine automation that
adds and deletes records of a database—what customer in their right mind
would allow that automation anywhere near their database? And there is
one Achilles heel of automated testing that no one has ever solved: the ora-
cle problem.

The oracle problem is a nice name for one of the biggest challenges in
testing: How do we know that the software did what it was supposed to do
when we ran a given test case? Did it produce the right output? Did it do so
without unwanted side effects? How can we be sure? Is there an oracle we
can consult that will tell us—given a user environment, data configuration
and input sequence—that the software performed exactly as it was
designed to do? Given the reality of imperfect (or nonexistent) specs, this
just is not a reality for modern software testers.

Without an oracle, test automation can only find the most egregious of
failures: crashes, hangs (maybe), and exceptions. And the fact that automa-
tion is itself software often means that the crash is in the test case and not in
the software! Subtle and/or complex failures are missed in their entirety.

So where does that leave the tester? If a tester cannot rely on developer
bug prevention or automation, where should she place her hope? The only
answer can be in manual testing. That will be the topic of part four of this
series.

Back to Testing
As I said earlier I started my Microsoft career in security. I took a lot of flack from
my testing readers when I “abandoned” testing for security back in 1999. But I
couldn’t help myself. After the nonevent of Y2K, I was looking for the next big bug
when David Ladd (who blogs at http://blogs.msdn.com/sdl) introduced me to secu-
rity. I was so uneducated on security that it was a veritable intellectual play-
ground, and I found my testing skills to be incredibly useful. Anyone who could
find security bugs could make serious impact. I wrote my second and third books in
the How to Break series during this time, invented a new way to find viruses, and
got gobs of funding from a very paranoid U.S. government. But security turned
out to be…well read on and you’ll find out.

Since starting this blog a couple weeks ago, I’ve received more com-
ments via email than have been posted on the blog. Many more.

It reminds me of when I was a professor and ended every class with
“Anyone have a question?” Silence almost always followed that query only
to have students line up after class with questions. There is something about
one-on-one interactions that just seems pleasing to people. I tried to take the
time to remember the questions, so I could answer them later for the entire
class when I thought those answers would be generally helpful.

Well, this is the blogging business, not the teaching business and I won-
der how much of any of it is helpful; however, the question that has come

An Annotated Transcript of JW’s Microsoft Blog 177

www.it-ebooks.info

http://blogs.msdn.com/sdl
http://www.it-ebooks.info/

most frequently to my inbox is “What made you leave security to come
back to testing?” Perhaps the answer has some claim to general interest.

That answer: ignorance.
In fact, ignorance was what sent me the other direction back in 2000

when my friend and colleague David Ladd (who blogs here) tweaked my
interest. Ignorance is core to progress in science, Matt Ridley explained it
best: “Most scientists are bored by what they have already discovered, it is
ignorance that drives them on.” When David laid out the wonder of secu-
rity testing (and in that sense I never really left testing) to me and I was
hooked. This is an important problem in a field I know nearly nothing
about. Eight years, two patents, two security books, more than a dozen
papers, and two startups later I have to admit I became a bit bored.

In some ways security is getting easier. Many of the problems with
security are of our own creation. Buffer overflows, for example, never had
to happen. They were a result of poor implementation of programming lan-
guages. Viruses didn’t either for other reasons. Microsoft and many other
companies are changing the game. Better compilers, hardened operating
systems, and managed code have made many security problems simply
vanish. Virtualization and cloud computing will continue this trend.
Ignorance is being replaced with knowledge and nowhere is that more
noticeable than in security.

When I heard Visual Studio was looking for an architect for the
test business, I found my juices stirring…the siren call of unbounded
ignorance.

Working in security made me realize just how hard testing really is.
Testing is not a problem created by humans; it’s the nature of the beast. It’s
part of the very fabric of the computer and the network in their infinite pos-
sibilities. In fact, someone wondered in another private exchange if I found
much had changed in my eight years “away.” “No” was my answer “and I
did not expect to.” Security has changed so fundamentally in eight short
years that had the situation been reversed and it was security I took a sab-
batical from, my skills would likely be suspect. Instead I find myself work-
ing on much the same testing problems as I had before.

This is not an indictment of any testing researcher, practitioner, or test-
ing in general: It is a nod to the complexity of the problem. There is a lot of
ignorance to keep all of us busy trying to find the right knowledge with
which to replace it. But we cannot let the seeming lack of progress deter us
from working on one of the loveliest scientific problems of our time.

Thanks for asking.

August 2008
I am still in England at this time; the next is my last post before going back to
Washington. So whatever conclusions you draw about the effect of English ale on
my writing must end after this next one.

178 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

Prevention Versus Cure (Part 4)
Manual testing is human-present testing. A human tester using their brain,
their fingers, and their wit to create the scenarios that will cause software
either to fail or to fulfill its mission. Manual testing often occurs after all the
other types of developer and automated techniques have already had their
shot at removing bugs. In that sense, manual testers are at somewhat of an
unlevel playing field. The easy bugs are gone; the pond has already been
fished.

However, manual testing regularly finds bugs and, worse, users (who
by definition perform manual testing) find them, too. Clearly there is some
power in manual testing that cannot be overlooked. We have an obligation
to study this discipline in much more detail…there’s gold in them-thar
fingers.

One reason human-present testing succeeds is that it allows the best
chance to create realistic user scenarios, using real user data in real user
environments and still allow for the possibility of recognizing both obvious
and subtle bugs. It’s the power of having an intelligent human in the testing
loop.

Perhaps it will be the case that developer-oriented techniques will
evolve to the point that a tester is unnecessary. Indeed, this would be a
desirable future for software producers and software users alike, but for the
foreseeable future, tester-based detection is our best hope at finding the
bugs that matter. There is simply too much variation, too many scenarios,
and too many possible failures for automation to track it all. It requires a
brain-in-the-loop. This is the case for this decade, the next decade, and at
perhaps a few more after that. We may look to a future in which software
just works, but if we achieve that vision, it will be the hard work of the
manual testers of this planet that made it all possible.

There are two main types of manual testing.
Scripted manual testing

Many manual testers are guided by scripts, written in advance, that
guide input selection and dictate how the software’s results are to be
checked for correctness. Sometimes scripts are specific: Enter this value,
press this button, check for that result and so forth. Such scripts are often
documented in Microsoft Excel tables and require maintenance as features
get updated through either new development or bug fixes. The scripts serve
a secondary purpose of documenting the actual testing that was performed.

It is often the case that scripted manual testing is too rigid for some
applications or test processes and testers take a less formal approach.
Instead of documenting every input, a script may be written as a general
scenario that gives some flexibility to the tester while they are running the
test. At Microsoft, the folks that manually test Xbox games often do this, so
an input would be “interact with the mirror” without specifying exactly the
type of interaction they must perform.

An Annotated Transcript of JW’s Microsoft Blog 179

www.it-ebooks.info

http://www.it-ebooks.info/

Exploratory testing
When the scripts are removed entirely, the process is called exploratory

testing. A tester may interact with the application in whatever way they
want and use the information the application provides to react, change
course, and generally explore the application’s functionality without
restraint. It may seem ad hoc to some, but in the hands of a skilled and
experienced exploratory tester, this technique can be powerful. Advocates
would argue that exploratory testing allows the full power of the human
brain to be brought to bear on finding bugs and verifying functionality
without preconceived restrictions.

Testers using exploratory methods are also not without a documenta-
tion trail. Test results, test cases, and test documentation is simply gener-
ated as tests are being performed instead of before. Screen capture and
keystroke recording tools are ideal for this purpose.

Exploratory testing is especially suited to modern web application
development using agile methods. Development cycles are short, leaving
little time for formal script writing and maintenance. Features often evolve
quickly so that minimizing dependent artifacts (like test cases) is a desirable
attribute. The number of proponents of exploratory testing is large enough
that its case no longer needs to be argued so I’ll leave it at that.

At Microsoft, we define several types of exploratory testing. That’s the
topic I’ll explore in part five.

If Microsoft Is So Good at Testing, Why Does Your Software
Still Suck?
I had no idea what kind of traffic a blog could generate until I wrote this. This is the
first blog post I wrote that made the MSDN home page, and man did it generate the
hits. My inbox was on fire, and mostly the comments were positive. But I remain
convinced that this is the post that got certain execs watching me. Seriously,
Microsoft has produced software that we are less than proud of…so has every other
software company on the planet. Software is hard to write, harder to test, and hard
to get even near to perfect. We desperately need to talk about the pains and be hon-
est about the result so that we can improve what we are doing. The most gratifying
part of this post was the mail I got from our competitors. They praised my honesty
and admitted their own culpability. This is software, and we are all in this together.

What a question! I only wish I could convey the way that question is
normally asked. The tone of voice is either partially apologetic (because
many people remember that I was a major ask-er of that same question long
before I became an ask-ee), or it’s condescending to the point that I find
myself smiling as I fantasize about the ask-er’s computer blue-screening
right before that crucial save. (Ok, so I took an extra hit of the Kool-Aid
today. It was lime and I like lime.)

After 27 months on the inside I have a few insights. The first few are,
I readily concede, downright defensive. But as I’ve come to experience
firsthand, true nonetheless. The last one though is really at the heart of the

180 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

matter: That, talent notwithstanding, testers at Microsoft do have some
work to do.

I’m not going down the obvious path: that testing isn’t responsible for
quality and to direct the question to a developer/designer/architect
instead. (I hate the phrase “you can’t test quality in”; it’s a deflection of
blame and as a tester, I take quality directly as my responsibility.)

But I am getting ahead of myself. I’ll take up that baton at the end of
this post. Let’s begin with the defensive points:

1. Microsoft builds applications that are among the world’s most com-
plex. No one is going to argue that Windows, SQL Server, Exchange,
and so forth aren’t complex, and the fact that they are in such wide-
spread use means that our biggest competitors are often our own prior
versions. We end up doing what we call “brown field” development (as
opposed to “green field” or version 1 development) in that we are
building on top of existing functionality. That means that testers have to
deal with existing features, formats, [and] protocols along with all the
new functionality and integration scenarios that make it very difficult
to build a big picture test plan that is actually doable. Testing real end-
to-end scenarios must share the stage with integration and compatibil-
ity tests. Legacy sucks and functionality is only part of it…as testers, we
all know what is really making that field brown! Be careful where you
step. Dealing with yesterday’s bugs keeps part of our attention away
from today’s bugs.
(Aside: Have you heard that old CS creationist joke: “Why did it take
god only seven days to create the universe?” The answer: “No installed
base.” There’s nothing to screw up, no existing users to piss off, or prior
functionality and crappy design decisions to tiptoe around. God got
lucky, us…not so much.)

2. Our user-to-tester ratio sucks, leaving us hopelessly outnumbered.
How many testers does it take to run the same number of test cases that
the user base of, say, Microsoft Word can run in the first hour after it is
released? The answer: far more than we have or could hire even if we
could find enough qualified applicants. There are enough users to vir-
tually ensure that every feature gets used in every way imaginable
within the first hour (day, week, fortnight, month, pick any timescale
you want and it’s still scary) after release. This is a lot of stress to put
our testers under. It’s one thing to know you are testing software that is
important. It’s quite another to know that your failure to do so well will
be mercilessly exposed soon after release. Testing our software is hard;
only the brave need apply.

3. On a related point, our installed base makes us a target. Our bugs
affect so many people that they are newsworthy. There are a lot of peo-
ple watching for us to fail. If David Beckham wears plaid with stripes
to fetch his morning paper, it’s scandalous; if I wore my underpants on
the outside of my jeans for a week few people would even notice. (In

An Annotated Transcript of JW’s Microsoft Blog 181

www.it-ebooks.info

http://www.it-ebooks.info/

their defense though, my fashion sense is obtuse enough that they
could be readily forgiven for overlooking it.) Becks is a successful man,
but when it comes to the “bad with the good” I’m betting he’s liking the
good a whole lot more. You’re in good company, David.
But none of that matters. We’ll take our installed base and our market
position any day. No trades offered. But still, we always ready to
improve. I think testers should step up and do a better job of testing
quality in. That’s my fourth point.

4. Our testers don’t play a strong enough role in the design of our apps.
We have this “problem” at Microsoft that we have a whole lot of
wicked smart people. We have these creatures called technical fellows
and distinguished engineers who have really big brains and use them
to dream really big dreams. Then they take these big dreams of theirs
and convince general managers and VPs (in addition to being smart
they are also articulate and passionate) that they should build this thing
they dreamt about. Then another group of wicked smart people called
program managers start designing the hell out of these dreams and
developers start developing the hell out of them and a few dozen
geniuses later this thing has a life of its own and then someone asks “how
are we going to test this thing” and of course it’s A LITTLE LATE TO BE
ASKING THAT QUESTION NOW ISN’T IT?

Smart people who dream big inspire me. Smart people who don’t
understand testing and dream big scare the hell out of me. We need to do a
better job of getting the word out. There’s another group of wicked smart
people at Microsoft, and we’re getting involved a wee bit late in the process.
We’ve got things to say and contributions to make, not to mention posteri-
ors to save. There’s a part of our job we aren’t doing as well as we should:
pushing testing forward into the design and development process and edu-
cating the rest of the company on what quality means and how it is
attained.

We can test quality in; we just have to start testing a lot sooner. That
means that everyone from TF/DE through the entire pipeline needs to have
test as part of their job. We have to show them how to do that. We have to
educate these smart people about what quality means and take what we
know about testing and apply it not only to just binaries/assemblies, but to
designs, user stories, specs and every other artifact we generate. How can it
be the case that what we know about quality doesn’t apply to these early
stage artifacts? It does apply. We need to lead the way in applying it.

I think that ask-ers of the good-tester/crappy-software question would
be surprised to learn exactly how we are doing this right now. Fortunately,
you’ll get a chance because Tara Roth, one of the directors of Test for Office
is speaking at STAR West in November. Office has led the way in pushing
testing forward and she’s enjoyed a spot as a leader of that effort. I think
you’ll enjoy hearing what she has to say.

By the way, Tara kicked butt at STAR.

182 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

Prevention Versus Cure (Part 5)
This is the last part of the Prevention versus Cure series and shows some of my
early thinking on how to divide exploratory testing into smaller more consumable
parts. But if you have read this book, you’ll see that my thinking evolved a great
deal. I decided against the freestyle-strategy-feedback model in favor of the in-the-
small and in-the-large model that I used in this book. Now you can compare which
one you like better.

Okay, we’re getting to the end of this thread and probably the part that
most of you have asked about: exploratory testing, particularly how it is
practiced at Microsoft.

At Microsoft, we define four types of exploratory testing. This isn’t
meant as a taxonomy, it’s simply for convenience, but it underscores that
exploratory testers don’t just test; they plan, they analyze, they think and
use any and all documentation and information at their disposal to make
their testing as effective as possible.

Freestyle Exploratory Testing
Freestyle exploratory testing is ad hoc exploration of an application’s fea-
tures in any order using any inputs without regard to what features have
and have not been covered. Freestyle testing employs no rules or patterns;
just do it. It’s unfortunate that many people think that all exploratory test-
ing is freestyle, but that undersells the technique by a long shot as we’ll see
in the following variations.

One might choose a freestyle test as a quick smoke test to see if any
major crashes or bugs can be easily found or to gain some familiarity with
an application before moving on to more sophisticated techniques. Clearly,
not a lot of preparation goes into freestyle exploratory testing, nor should it.
In fact, it’s far more “exploratory” than it is “testing” so expectations should
be set accordingly.

There isn’t much experience or information needed to do freestyle
exploratory testing. However, combined with the exploratory techniques
below, it can become a very powerful tool.

Scenario-Based Exploratory Testing
Traditional scenario-based testing involves a starting point of user stories or
documented end-to-end scenarios that we expect our ultimate end user to
perform. These scenarios can come from user research, data from prior ver-
sions of the application, and so forth, and are used as scripts to test the soft-
ware. The added element of exploratory testing to traditional scenario
testing widens the scope of the script to inject variation, investigation, and
alternative user paths.

An exploratory tester who uses a scenario as a guide will often pursue
interesting alternative inputs or pursue some potential side effect that is
not included in the script. However, the ultimate goal is to complete the
scenario so these testing detours always end up back on the main user path
documented in the script.

An Annotated Transcript of JW’s Microsoft Blog 183

www.it-ebooks.info

http://www.it-ebooks.info/

Strategy-Based Exploratory Testing
If one combines the experience, skill, and Jedi-like testing perception of the
experienced and accomplished software tester with freestyle testing, one
ends up with this class of exploratory testing. It’s freestyle exploration but
guided by known bug-finding techniques. Strategy-based exploratory
testing takes all those written techniques (like boundary value analysis or
combinatorial testing) and unwritten instinct (like the fact that exception
handlers tend to be buggy) and uses this information to guide the hand of
the tester.

These strategies are the key to being successful; the better the repertoire
of testing knowledge, the more effective the testing. The strategies are based
on accumulated knowledge about where bugs hide, how to combine inputs
and data, and which code paths commonly break. Strategic testing com-
bines the experience of veteran testers with the free-range habits of the
exploratory tester.

Feedback-Based Exploratory Testing
This category of testing starts out freestyle but as soon as test history is built
up, the tester uses that feedback to guide future exploration. “Coverage” is
the canonical example. A tester consults coverage metrics (code coverage,
UI coverage, feature coverage, input coverage, or some combination
thereof), and selects new tests that improve that coverage metric. Coverage
is only one such place where feedback is drawn. We also look at code churn
and bug density, among others.

I think of this as “last time testing”: the last time I visited this state of
the application I applied that input, so next time I will choose another. Or
the last time I saw this UI control I exercised property A; this time I will
exercise property B.

Tools are very valuable for feedback-based testing so that history can be
stored, searched, and acted upon in real time.

The Future of Testing (Part 1)
Microsoft has this really cool home of the future built on campus that shows how
technology and software will change the way families live and communicate. If
you’ve ever been to the “carousel of progress” at Disney World, you have the right
picture, except that Microsoft’s is by far more modern. (Disney’s was an old exhibit
and a picture of the future from a 1960’s point of view.) We’ve also made a series of
videos about the future of retail, health care, productivity, manufacturing, and the
like, and one day I stumbled across these videos. As beautifully done as they are,
they represent a very compelling future where computers, RFIDs, and software are
everywhere. As a tester, this scared me, and I couldn’t help but think that with
quality as bad as it is with today’s software, how will we ever manage to test tomor-
row’s apps?

Thus began my future quest, and I talked about this with dozens of people
around the company and started doing presentations to get input from hundreds

184 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

more. The result was a keynote presentation at Euro STAR and this blog series.
Again, I updated this vision in this book, but this will help you see how the idea
progressed.

Outsourcing. It’s a familiar term and the way a lot of testing gets done
here in 2008. However, it wasn’t always so and it’s not liable to be that way
in the future either. In this post I will talk about how I think testing will get
done in the future and how outsourcing might fundamentally change as a
business model for software testing.

In the beginning, very little testing was outsourced. Testing was per-
formed by insourcers, people employed within the same organization that
wrote the software. Developers and testers (often the same people perform-
ing both tasks) worked side by side to get the software written, tested and
out the door.

The vendors’ role in the insourcing days was to provide tools that sup-
ported this self service testing. But the vendors’ role soon changed as
demand for more than just tools surfaced. Instead of just providing tools to
insourcers, vendors emerged that provided testing itself. We call this out-
sourcing, and it is still the basic model for the way many development
shops approach testing: hire it out.

So the first two generations of testing look like this:

Generation Role of Vendors

(1st) Insourcing Provide tools
(2nd) Outsourcing Provide testing (which subsumes the tools)

The next logical step in the evolution of testing is for vendors to pro-
vide testers and this is exactly the era we’ve entered with crowdsourcing.
Yesterday’s announcement by Utest marks the beginning of this era, and it
is going to be very interesting to see it unfold. Will crowdsourcers outper-
form outsourcers and win this market for the future? Clearly market eco-
nomics and the crowds’ ability to execute will determine that, but my
personal view is that the odds are stacked in favor of the crowd. This is not
really an either-or situation but the evolution of the field. The older model
will, over time, make way for the newer model. This will be a case
Darwinian natural selection played out in the matter of only a few short
years. The fittest will survive with the timeframe determined by economics
and quality of execution.

That gives us the third generation:
(3rd) Crowdsourcing Provide testers (which subsumes the testing and

tools)
And what about the future? Is there an aggressive gene buried deep in

the DNA of our discipline that will evolve crowdsourcing into something
even better? I think so, though it is many years and a few technological
leaps away. I’ll coin a new term for now just to put a name on this concept:
testsourcing.

(4th) Testsourcing Provide test artifacts (which subsumes the testers,
testing and tools)

An Annotated Transcript of JW’s Microsoft Blog 185

www.it-ebooks.info

http://www.it-ebooks.info/

Testsourcing cannot be explained however without one key technologi-
cal leap that has yet to occur. This technological leap is virtualization will be
described in part two of this series.

The Future of Testing (Part 2)
For testsourcing to take hold of the future of testing, two key technological
barriers must be broken: the reusability of test artifacts and the accessibility
of user environments. Let me explain:

Reusability: The reusability of software development artifacts, thanks
to the popularization of OO and its derivative technologies in the 1990s, is a
given. Much of the software we develop today is comprised of preexisting
libraries cobbled together into a cohesive whole. Unfortunately, testing is
not there yet. The idea that I can write a test case and simply pass it off to
another tester for reuse is rare in practice. Test cases are too dependent on
my test platform: They are specific to a single application under test; they
depend on some tool that other testers don’t have; they require an automa-
tion harness, library, network config (and so forth) that cannot be easily
replicated by a would-be re-user.

Environment: The sheer number of customer environments needed to
perform comprehensive testing is daunting. Suppose I write an application
intended to be run on a wide variety of mobile phones. Where do I get all
these phones to test my application on them? How do I configure all these
phones so they are representative of my intended customers’ phones? And
the same thing goes for any other type of application. If I write a web app,
how do I account for all the different OS, browsers, browser settings, plug-
ins, Registry configurations, security settings, machine-specific settings, and
potentially conflicting application types?

The answer that is emerging for both of these needs is virtualization,
which is steadily becoming cheaper, faster, and more powerful and is being
applied to application domains that run the gamut from lab management to
IT infrastructure deployment.

Virtualization has great potential to empower the “crowd” for crowd-
sourcing. Specialized test suites, test harnesses, test tools can be one-clicked
into virtual machines that can be used by anyone, anywhere. Just as soft-
ware developers of today can reuse the code of their colleagues and fore-
bears, so too will the testers in the crowd be able to reuse test suites and test
tools. And just as that reuse has increased the range of applications that a
given developer can reliably build, it will increase the types of applications
that a tester can test. Virtualization enables the immediate reusability of
complicated and sophisticated testing harnesses.

Conveniently, virtualization does the same favor for testers with respect
to user environments. A user can simply one-click their entire computer
into a virtual machine and make it available to testers via the cloud. If we
can store all the videos in the world for instant viewing by anyone, any-
where, then why can’t we do the same with virtual user environments?

186 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

Virtualization technology is already there (in the case of PCs) or nearly
there (in the case of mobile or other specialized environments). We simply
need to apply it to the testing problem.

The end result will be the general availability of a wide variety of
reusable, automated test harnesses, and user environments that can be
employed by any tester anywhere. This serves to empower the crowd for
crowdsourcing, putting them on more than even footing with the out-
sourcers from a technology standpoint, and since they far outnumber the
outsourcers (at least in theory if not yet in practice), the advantage is clearly
in favor of this new paradigm.

Market forces will also favor a crowdsourcing model powered by virtu-
alization. User environments will have a cash value as crowd testers will
covet them to gain a competitive advantage. Users will be incentivized to
click that button to virtualize and share their environment. (Yes, there are
privacy implications to this model, but they are solvable.) And since prob-
lematic environments will be even more valuable than those that work well,
there will be an upside for users who experience intermittent driver and
application errors: The test VMs they create will be more valuable…there’s
gold in those lemons! Likewise, testers will be incentivized to share out test-
ing assets and make them as reusable as possible. Market forces favor a
future with reusable test artifacts and virtualization makes it possible.

So what does this virtualization-powered future mean to the individual
tester? Well, fast forward 20-30 years in which time millions (?) of user envi-
ronments will have been captured, cloned, stored, and made available. I can
envision open libraries of such environments that testers can browse for
free or proprietary libraries available by subscription only. Test cases and
test suites will enjoy the same treatment and will be licensed for fees com-
mensurate with their value and applicability.

Perhaps, there will come a time when there are very few human testers
at all, only a few niche, and specialized products (or products of extreme
complexity like operating systems) will actually require them. For the large
majority of development, a single test designer can be hired to pick and
choose from the massive number of available test virtual environments and
execute them in parallel: millions of person-years of testing wrapped up in
a matter of hours because all the automation and end-user configurations
are available and ready to use. This is the world of testsourcing.

It’s the end of testing as we currently know it, but it is the beginning of
a whole new set of interesting challenges and problems for the test commu-
nity. And it’s a viable future that doesn’t require more than virtualization
technology that either already exists or is on the near term horizon. It also
implies a higher-order effort by testers as we move into a design role (in the
case of actually performing testing) or a development role (in the case of
building and maintaining reusable test artifacts). No more late cycle heroics;
testers are first class citizens in this virtualized future.

An Annotated Transcript of JW’s Microsoft Blog 187

www.it-ebooks.info

http://www.it-ebooks.info/

September 2008
In addition to the Future series, I snuck in a few one-offs. This next one on certifi-
cation generated a lot of attention. Apparently, certification is making the consult-
ants who do training a lot of money, and my skepticism toward the value of
certification was not appreciated. This post generated the first real hate mail as a
result of this blog. I was accused of sabotaging the certification movement by
implying that Microsoft thought it was nonsense. I did much more though than
simply imply it… Most people at Microsoft really do think its nonsense!

On Certification
How do you feel about tester certification? I’ve heard all the arguments for
and against and looked at the different certifications and their require-
ments. Frankly, I have not been impressed. My employer doesn’t seem
impressed either. I have yet to meet a single tester at Microsoft who is certi-
fied. Most don’t even know there is such a thing. They’ve all learned testing
the old fashioned way: by reading all the books and papers they can get
their hands on, apprenticing themselves to people at the company that are
better at it than they are, and critiquing the gurus and would-be gurus who
spout off in person and in print.

Simple logic tells me this: Microsoft has some of the best testers I have
ever met. (I mean, seriously, the empire knows their testing and they know
their testers. I’ve studied testing and have been credited with more test
innovation than perhaps I deserve, but I know this field, and rarely a day
goes by that I don’t meet a tester who is a far shot better than I am. I’d love
to name some of them here, but invariably I’d leave some out and they’d be
pissed. Pissed testers are not easy to deal with so that’s why I haven’t both-
ered naming them.) So in my experience there is an inverse relationship
between certification and testing talent. The same is true of testers at other
companies I admire that I meet at conferences and meetings. The really
good testers I know and meet just aren’t certified. There is the occasional
counterexample, but the generalization holds. (Whether the reverse is true, I
have little data with which to form an opinion.)

Let me repeat, this is my experience and experience does not equate to
fact. However, the reason I am blogging about this is because I met three
office managers/administrators recently who are certified. These three are
not testers, but they work around software testers, and they hosted a certifi-
cation course and thought it would be helpful to sit in and understand what
the people around them did day in and day out. They sat the courses, took
the exam, and got their certification.

Hmm.
Okay, I’ll grant they are smart, curious, and hard working. But there is

more to testing than that triad. They readily admit they know little about
computing, even less about software. From the time I spent with them, I
didn’t get the impression that they would have made good testers. Their

188 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

skill lies elsewhere. I doubt they would pass any class I ever taught at
Florida Tech, and I imagine they’d find the empire’s training a bit too much
for them to digest as well. Yet they aced the certification exam without
breaking a sweat.

What am I missing? Isn’t the point of a certification to certify that you
can do something? Certify is a really strong word that I am uncomfortable
using so lightly. When I hire a certified plumber, I expect said plumber to
plumb beyond my uncertified ability. When I hire a certified electrician, I
expect that electrician to trivialize the problems that vexed me as an ama-
teur. If I hired a certified tester, I would expect them to test with a similar
magnitude of competence and skill. I wonder if an office manager of a
plumbing company could so easily get certified to plumb.

Well I checked into it. Plumbers (at least in Seattle) are indeed certified,
but they don’t get that certification by taking a course and an exam
(although they do both). They serve time apprenticing to a master plumber.
You better believe that by the time they get that seal of approval, they can
plumb till the cows come home.

I realize testing isn’t plumbing but the word certification gives me
pause. It’s a strong word. Is there something more to tester certification that
I am missing? Is it simply that you understand the base nomenclature of
software or that you can converse with other testers and appear as one of
the crowd? Or that you simply sat through a course with enough of an open
mind that some of it sunk in? What value does this actually bring to the dis-
cipline? Are we any better off because we have these certifications? Are we
risking certifying people who really can’t test and thereby water down the
entire discipline?

I don’t think these certifications are really certifications at all. It’s just
training. Calling it a certification is over selling it by a long shot. In my
mind a certification means you have a seal of approval to do something
beyond what an amateur/tinkerer can accomplish. Otherwise, what has the certi-
fication accomplished?

I am proud of being a tester, and if I seem arrogant to be that way then
so be it. What I do and what my compatriots do is beyond a single course
that an office manager, no matter how smart, can just pick up.

However, if I am wrong about certification, I’d like to be enlightened.
For the life of me, I don’t see the upside.

The Future of Testing (Part 3)
This is my favorite prediction and THUD is a tool we are actively constructing.

So we are now at my third prediction that deals with information and
how testers will use information to improve their testing in the future.

Prediction 1: Testsourcing
Prediction 2: Virtualization
Prediction 3: Information

An Annotated Transcript of JW’s Microsoft Blog 189

www.it-ebooks.info

http://www.it-ebooks.info/

What information do you use to help you test your software? Specs?
User manuals? Prior (or competing) versions? Source code? Protocol ana-
lyzers? Process monitors? Does the information help? Is it straightforward
to use?

Information is at the core of everything we do as software testers. The
better our information about what the software is supposed to be doing and
how it is doing it, the better our testing can actually be. I find it unaccept-
able that testers get so little information and none of it is specifically
designed to make it easier to do our jobs. I am happy to say that this is
changing…rapidly…and that in the near term we will certainly be gifted
with the right information at the right time.

I take my inspiration for testing information from video games. In
video games, we have the surfacing and use of information darn near per-
fected. The more information about the game, the players, the opposition,
the environment, the better you play and the higher score you achieve. In
video games this information is displayed in something called a HUD, or
heads up display. All a players’ abilities, weapons, health info are displayed
and clickable for immediate use. Likewise, your location in the world is dis-
played in a small minimap and information about opponents is readily
available. (My son used to play Pokémon in which he had access to a
Pokédex which kept information about all the various species of Pokémon
he might encounter in the game…I’d like a Bug-é-dex that did the same for
bugs I might encounter.)

But most of the testing world is mired in black box testing without such
a rich information infrastructure. Where’s is our minimap that tells us
which screen we are testing and how that screen is connected with the rest
of the system? Why can’t I hover over a GUI control and see source code or
even a list of properties the controls implements (and that I can test)? If I am
testing an API, why can’t I see the list of parameter combinations that I and
all my fellow testers have already tried? I need all of this quickly and in a
concise and readily consumable format that assists my testing rather than
shuffling through some SharePoint site or database full of disconnected
project artifacts.

My colleague at Microsoft, Joe Allan Muharsky, calls the collection of
information that I want so badly a THUD — the Tester’s Heads Up Display
— putting the information a tester needs to find bugs and verify functional-
ity in a readily consumable format for software testers. Think of a THUD as
a skin that wraps around the application under test and surfaces informa-
tion and tools that are useful in context of the application. Few THUDs are
in use today or even contain the right information. In the future, no tester
would think of testing without one, just like no gamer could imagine tra-
versing an unpredictable and dangerous world without their HUD.

If this sounds a little like cheating, then so be it. Gamers who add cheats
to their HUD have an even bigger advantage over gamers who don’t.
And as in-house testers who have access to the source, the protocols, the
back-end, front-end and middleware we, can indeed “cheat.” We can have a
massive bug-finding advantage over ordinary black box testers and users.

190 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

This is exactly the situation we want: to be in a position to find our own
bugs faster and more efficiently than anyone else. This is cheating I approve
of wholeheartedly but we’re not currently taking advantage of the informa-
tion required for the cheats.

In the future, we will. That future will be fundamentally different than
the information-starved present in which we are current working.

The Future of Testing (Part 4)
There is some magic in this prediction that in retrospect, the world has not yet per-
fected. But as these are predictions of the future, that seems appropriate. Many peo-
ple talk about moving testing forward, but they mean simply getting testers
involved earlier. From where I sit, we’ve been getting testers involved in spec
reviews and the like for decades. That’s moving testers forward, not moving testing
forward. What we really need to do is to get testable stuff earlier so that we can
apply our trade earlier in the process.

Moving Testing Forward
There is a gap that exists in testing that is eating away at quality, productiv-
ity, and the general manageability of the entire development life cycle. It is
the gap between when a bug is created and when that same bug is detected.
The larger the gap, the more time a bug stays in the system. Clearly that’s
bad, but pointing out that the longer bugs stay in the system, the more
expensive they are to remove is what we’ve done in the past.

What we’re going to do in the future is close the gap.
But closing the gap means a fundamental change in the way we do test-

ing. In 2008 a developer can introduce a bug, quite by accident mind you —
our development environments do little to discourage that, and few con-
certed attempts are made to find the bug until the binary is built. We insert bugs
and then simply allow them free reign until far too late in the process where
we depend on late cycle bug finding heroics to bail us out.

As software testers we provide a valuable set of bug finding and analy-
sis techniques; what we have to do in the future is apply these techniques
earlier in the process, far sooner than we do now. There are two main things
I foresee that will help us accomplish this. One is simply not waiting for the
binary and applying our tests on early development artifacts. The second is
building the binary earlier so we can test it earlier.

Let’s take these in order beginning with “testing on early development
artifacts.” During late-cycle heroics we apply any number of bug finding
strategies on the binary through its published interfaces. We take the compiled
binary or collection of assemblies, byte code and such hook them to our test
harnesses, and pummel them with inputs and data until we ferret out
enough bugs to have some confidence that quality is good enough.
(Perhaps I’ll cover measurement and release criteria in a future blog entry.)
But why wait until the binary is ready? Why can’t we apply these test
techniques on architecture artifacts?…On requirements and user sto-
ries?…On specifications and designs? Can it be possible that all the technol-
ogy, techniques, and testing wisdom collected over the past half century

An Annotated Transcript of JW’s Microsoft Blog 191

www.it-ebooks.info

http://www.it-ebooks.info/

applies only to an artifact that executes? Why aren’t architectures testable in
the same way? Why can’t we apply what we know to designs and story-
boards? Well the answer is that there is no good reason we don’t. I actually
think that many progressive groups at Microsoft do apply testing tech-
niques early, and that in the future we’ll figure out how to do this collec-
tively. Testing will begin, not when something becomes testable as is the case
now, but instead testing will begin the moment there exists something that
needs testing. It’s a subtle but important distinction.

“Building the binary earlier” is the second part of this but doing so rep-
resents a technological hurdle that needs jumping. In 2008 we write soft-
ware component by component and we can’t build the whole without each
of the parts being ready. This means that testing must wait until all the com-
ponents achieve some level of completion. Bugs are allowed to sit for days
and weeks before testing can be brought to bear on their discovery. Can we
substitute partially completed components with virtual ones? Or with stubs
that mimic external behavior? Can we build general purpose chameleon
components that change their behavior to match the system into which they
are (temporarily) inserted? I predict we will…because we must. Virtual and
chameleon components will allow testers to apply their detection craft soon
after a bug is created. Bugs will have little chance to survive beyond their
first breath.

Testing is too important to wait until the end of the development cycle
to start it. Yes, iterative development and agile create testable code earlier
(albeit smaller, incomplete functionality), but we still have far too many
bugs appearing after release. Clearly what we are doing is not enough. The
future must bring the power of testing to bear on early development arti-
facts and allow us to scaffold together a workable, testable environment
long before the code is entirely build-able.

The Future of Testing (Part 5)
Visualization is one area in which we are making a lot of progress in the test tools
world. This is an area only a few short years away. Software testing will become
much more like playing a video game within two to five years.

Visualization.
What does software look like? Wouldn’t it be helpful if we had a visual-

ization of software that we could use while the software was being con-
structed or tested? With a single glance we could see that parts of it remain
unfinished. Dependencies, interfaces, and data would be easy to see and,
one would hope, easier to test. At the very least we could watch the soft-
ware grow and evolve as it was being built and watch it consume input and
interact with its environment as it was being tested.

Other engineering disciplines have such visuals. Consider the folks
who make automobiles. Everyone involved in the assembly process can see
the car. They can see that it has yet to have bumpers or a steering wheel
installed. They can watch it progress down the mechanized line from an

192 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

empty shell to a fully functional product ready to be driven to a dealer.
How much longer until it is complete? Well, its forty feet from the end of
the line!

The fact that everyone involved in making the car has this shared vision
of the product is extremely helpful. They speak in terms they can all under-
stand because every part, every connection, every interface is where it is
supposed to be when it is supposed to be there.

Unfortunately, that is not our world. Questions or the sort asked above
“How long until it is complete?” or “What tasks remain undone?” vex us.
This is a problem that 21st century testers will solve.

Architects and developers are already solving it. Visual Studio is replete
with diagrams and visualizations from sequence charts to dependency
graphs. Testers are solving it, too. Visualization solutions exist within the
empire’s walls for seeing code changes in an Xbox title (objects whose code
has churned glow green when rendered and then revert to normal after
they have been tested) to identifying untested complexity within the
Windows code base, (Heat maps of code coverage versus code complexity
can be viewed in three dimensional space leading testers right to the prob-
lem areas.) The visualizations are stunning, beautiful, and allow testers to
determine what needs testing simply by glancing at the visual.

We need more of this but we need to approach the problem carefully.
We can’t simply accept the diagrams provided to us by the UML and mod-
eling crowds. Those visuals are meant to solve other problems that may or
may not overlap with the problems we face. Many of the existing visuals
were created to serve architects or developers whose needs are different. We
need to think this through as testers. We need visuals that map require-
ments to code, tests to interfaces, code churn to the GUI, and code coverage
to controls. Wouldn’t it be nice to launch the app under test and be able to
see controls glow with an intensity that reflects the amount of coverage or
the number of tests that have touched them? Wouldn’t it be nice to be able
to see a graphic animating network utilization or real time database com-
munication? Why shouldn’t we be able to see the network traffic and the
SQL queries as they happen? There is much that is going on unseen beneath
the covers of our application, and it’s time we surfaced it and leveraged it
to improve code quality.

This is an imminently solvable problem and one that many smart peo-
ple are working on. This is software testing in living color.

October 2008
During the month of October I continued my series on the future of testing and my
blog numbers really started to pick up, which brought some front-page exposure on
MSDN and that caused even more traffic. I also began to get a lot more requests for
my Future of Testing talk around the company, so I found myself talking about this
subject more and debating it with a lot of smart Microsofties. This really helped

An Annotated Transcript of JW’s Microsoft Blog 193

www.it-ebooks.info

http://www.it-ebooks.info/

expose some weaknesses and solidify the strengths of the vision. I began to gravitate
toward the ”information” prediction as the primary one of the eight predictions.

But in this next part, I talk about culture. I’ve never revealed to anyone who
the technical fellow/distinguished engineer actually is in the following story. I very
much doubt I ever will, but I am still meeting with him regularly about software
testing.

The Future of Testing (Part 6)
Testing Culture

A couple of months ago I attended a lecture given by one of the
Empire’s cache of technical fellows (maybe he was a distinguished engi-
neer, I am not sure as they look so much alike). Like all our TFs the guy was
wicked smart, and as he presented a design for some new product he and
his team were building, I had an epiphany.

Evidently epiphanies cause me to display facial expressions akin to one
who is passing a kidney stone. The TF noticed (so did the gal sitting next to
me, but I don’t want to talk about that) and approached me after the talk.
Here’s how that conversation went:

“James,” (he knew my name!) “you seem to have some issue with my
design or with the product. I’d love to get your feedback.”

“No, I have no problem with either your product or with your design.
My problem is with you.”

“Excuse me?”
“People like you scare me,” I told him. “You spend all your time dream-

ing about features and enabling scenarios and designing interfaces and pro-
tocols. You are in a position of importance and people listen to you and
build the stuff you dream about. And you do all this without knowing squat
about testing.”

And this was the moment he sought to do the right thing…reach out to
test. He invited me review the design [and] get involved. It’s exactly what
you’d expect him to do.

But it is exactly the wrong response.
Having a tester involved in design is better than not having test repre-

sented at all. But not much better. Testers will be looking for testability
issues. Developers will be looking for implementation issues. Who will be
looking at both? Who will be able to decide on the right trade-off? Neither.
Getting testers involved in design is only incremental improvement; getting
designers (and every other role) involved in test is the future.

Seriously, how is it that the people who build software understand so
little about testing? And why have we not tried to fix this before? Are we, as
testers, so vested in our current role that we are jealously guarding the keys
to our intellectual kingdom? Is testing so arcane and obscure that develop-
ers can’t find the answers they seek? Have developers grown so accus-
tomed to handing off this “less interesting” aspect of the process to us that
they now take it for granted?

194 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

Adding testers to the mix hasn’t worked. Getting them involved earlier
hasn’t worked. We have products that have a 1:1 ratio of developers to
testers and yet those products are not seen as highly reliable. We also have
products that have far “worse” ratio that are clearly better products. I think
in the future we will come to see that the separation of roles isn’t working.
The separation of roles might even guarantee that testing comes late to the
dance and fails to fully leverage its intellectual potential on the product.

The current testing culture and separation of roles is broken and the
way to fix it is by merging roles. Quality needs to be everyone’s job. Think
of it in Tolkiensian terms: one role to rule them all!

Imagine a world where testing knowledge is contained in each and
every contributor’s head. The architects know testing, the designers know
testing, the developers know testing, and they apply that knowledge con-
stantly and consistently in everything they do. This doesn’t wipe out the
separate testing role; there is something to be said for some amount of test
independence; it enables better testing. If each decision made throughout
product development asks the right testing questions, then the final system
test can reach a level of thoroughness we can only dream about now. If
everyone on the project understood testing, imagine what a few dedicated
testers could accomplish!

Getting to this testing utopia is going to require a massive cultural
change. Testing must reach into academia and the other places where pro-
gramming is taught. As developers progress in their careers, this education
must continue and become more advanced and powerful. We need to get to
the point that all project stakeholders understand testing and can’t help but to
apply its principles in everything they do. Tools will one day support this as
well. One day we will be to the point that untestable software just never
gets written, not because some strong tester made it happen, but because
everyone on the project made it happen.

Testing is too important to be the “bit at the end” of the process. It is
early in the process where design decisions impact testing, and it is there
that the solutions lay. It’s also too important to leave it in the hands of a
single role dedicated to quality assurance. Instead we need a fundamental
cultural shift that makes quality everyone’s job and embeds its principles in
everything we do.

The Future of Testing (Part 7)
I blew this one. I should have called it “Testing as Design” because that is much
more what I meant. The day-to-day activities of testing will move to a higher level
with all the core assets such as test environments and reusable test cases available
to pick and choose from. But here it is in its original and slightly flawed form.
Testers as Designers

Modern testers play largely a role of late cycle heroics that often goes
unappreciated come review and bonus time. When we find the big bug it is
because we were supposed to…that’s the expectation. When we miss the
big bug, people ask questions. It’s often a case of ignored-if-you-do and
damned-if-you-don’t.

An Annotated Transcript of JW’s Microsoft Blog 195

www.it-ebooks.info

http://www.it-ebooks.info/

This is going to change and it is going to change soon because it must.
My friend Roger Sherman (Microsoft’s first companywide director of Test)
describes this change as the testing caterpillar becoming a butterfly.
According to Roger: Testing’s butterfly is design.

I couldn’t agree more. As testing and test techniques move earlier in the
process, testers will do work more similar to software design than software
verification. We will place more emphasis on designing quality strategy for
all software artifacts and not just the binary. We will spend more time rec-
ognizing the need for testing rather than actually executing test cases. We
will oversee and measure automation rather than building and debugging
it. We will spend more time reviewing the status of pre-existing tests than
building new ones. We will become designers and our work will be per-
formed at a higher level of abstraction and earlier in the life cycle.

At Microsoft this role is often that of the test architect and I think most
testing jobs are moving in this direction. If you’ve read the first six posts on
this Future of Testing thread, then you’ll appreciate the changes that are
making this design centric role possible in the first place.

Now this sounds like a nice future but there is a decidedly black lining
to this silver cloud. The blackness comes from the types of bugs and the
types of testing we are currently good at in 2008. It is no great stretch to say
that we are better at finding structural bugs (crashes, hangs, and bugs hav-
ing to do with the software and its plumbing rather than its functionality)
than we are at finding business logic bugs. But the future I’ve painted in
this series has any number of technological solutions to structural bugs.
That will leave the software tester to deal with business logic bugs, and that
is a category of issues that I do not think our entire industry deals with in
any organized or intentional fashion.

Finding business logic bugs means that we have to understand the
business logic itself. Understanding business logic means far more interac-
tion with customers and competitors; it means steeping ourselves in what-
ever industry our software operates; it means not only working earlier in
the software life cycle but also involving ourselves with prototypes, require-
ments, usability, and so forth like we have never done before.

There’s hard work early in the software life cycle that testers aren’t
experienced in doing. Performing well up front will mean facing these chal-
lenges and being willing to learn new ways of thinking about customers
and thinking about quality.

Things are decidedly different at the front end of the assembly line, and
it’s a place more and more testers will find themselves as the future makes
way for the present.

The Future of Testing (Part 8)
I got a call from our privacy folks after this one. Microsoft takes great pains to pro-
tect customer information and to behave in a manner that doesn’t create identity-
theft problems and the like. Still, I think that we need to migrate testing into the
field through our software. It’s self-testing and self-diagnostic software. Yes there
are some privacy implications, but surely we can work through those.

196 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

Testing Beyond Release
This is the final part of my series on the future of testing. I hope you’ve

enjoyed it. For this post I’ve saved what might be one of the more contro-
versial of my predictions: Namely that in the future we will ship test code
with our products and be able to exercise that code remotely. I can see the
hackers’ grins and hear the privacy advocates’ indignation already, but I’ll
respond to those concerns in a minute.

I was in the Windows org when Vista shipped, and I recall demonstrat-
ing it to my then 8-year-old son at home one evening. He plays (and works
if you’ll believe that) on computers a great deal, and he really liked the Aero
interface, the cool sidebar gadgets, and the speed at which his favorite
games (which at that time were Line Rider and Zoo Tycoon) ran really
impressed him. I recall thinking “too bad he’s not an industry blogger,” but
I digress.

At the end of the demo, he hit me with the question every tester dreads:
“Daddy, which part did you do?”

I stopped speaking, which is rare for me, and stammered something
unintelligible. How do you tell an 8 year old that you worked for months (I
had just started at Microsoft and only got in on Vista toward the end of its
cycle) on something and didn’t actually create any of it? I tried my canned
answers to this dreaded question (exclamation points required…they help
me convince myself that what I am saying has some truth to it):

“I worked on making it better!”
“The fact that it works as well as it does…well that’s me!”
“If it weren’t for us testers, this thing would be a menace to society!”
I am especially fond of that last one. However, all of them ring hollow.

How is it that I can work on a product for so long and not be able to point
to more than the absence of some of the bugs as my contribution?

I think that’s where this idea came from: that test code should ship with
the binary and it should survive release and continue doing its job without
the testers being present. This isn’t a lame attempt to give me and my com-
patriots something to point to for bragging rights, but to provide ongoing
testing and diagnostics. Let’s face it; we’re not done testing when the prod-
uct releases, so why should we stop?

We already do some of this. The Watson technology (the famous
“send/don’t send” error reporting for Windows apps) that ships in-process
allows us to capture faults when they occur in the field. The next logical
step is to be able to do something about them.

Watson captures a fault and snaps an image of relevant debug info.
Then some poor sap at the other end of the pipe gets to wade through all
that data and figure out a way to fix it via Windows update. This was revo-
lutionary in 2004, still is actually. In 2–5 years it will be old school.

What if that poor sap could run additional tests and take advantage of
the testing infrastructure that existed before the software was released?
What if that poor sap could deploy a fix and run a regression suite in the

An Annotated Transcript of JW’s Microsoft Blog 197

www.it-ebooks.info

http://www.it-ebooks.info/

actual environment in which the failure occurred? What if that poor sap
could deploy a production fix and tell the application to regress itself?

He’d no longer be a poor sap, that’s for sure.
To accomplish this it will be necessary for an application to remember

its prior testing and carry along that memory wherever it goes. And that
means that the ability to test itself will be a fundamental feature of software
of the future. Our job will be to figure out how to take our testing magic
and embed it into the application itself. Our reward will be the pleasure of
seeing that sparkle in our kids’ eyes when they see that the coolest feature
of all is the one we designed!

Oh, and to the hackers and privacy folks: never fear! Hugh Thompson
and I warned about including test code in shipping binaries (see Attack 10
in How to Break Software Security) long ago. Since we know how to break it,
we’ll be in a great position to get it right.

Speaking of Google
Why is it that every time I use Google in the title of one of my posts, traffic seems to
spike? This post was only a dumb announcement but was read more than many
others! But given that I am now a Google employee, perhaps it was a premonition.

Actually, it is more like speaking at Google as I am headed to GTAC
tomorrow to give the newest version of my Future of Testing talk. Hope to
see you there.

I’ve received tons of feedback on my blog posts about the future. So
much so that I spent most of this weekend integrating (or stealing, I sup-
pose you could say, depending on your perspective) your insights, correc-
tions, and additions. Thanks to all of you who have discussed these things
with me and shared your wisdom.

If you happen to miss GTAC, I’ll be giving a similar but darker version
at EuroSTAR entitled The End of Testing As We Know It in The Hague on
November 11. Yes I was drinking and listening to REM when I made the
presentation.

Both GTAC and EuroSTAR were big successes. I think my EuroSTAR talk
benefited a great deal from the trial run and both sparked a lot of discussion. I made
some fantastic contacts at Google to boot. Odd how so many of them used to work
for Microsoft.

Manual Versus Automated Testing Again
I can’t believe how much mail I got over the whole manual versus automation ques-
tion, and it’s fairly easy to see why. My Ph.D. dissertation was on model-based
testing, and for years I taught and researched test automation. Now my obsession
with manual testing is in full gear. It’s not an either-or proposition, but I do believe
that manual testing has an extreme advantage of having a human testers brain
fully engaged during the entire process whereas automation foregoes that benefit
the moment it starts to run.

In my Future series I was accused of supporting both sides of the man-
ual versus automated debate and flip-flopping like an American politician

198 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

who can’t decide whether to kiss the babies or their moms. Clearly this is
not an either-or proposition. But I wanted to supply some clarity in how I
think about this.

This is a debate about when to choose one over the other and which
scenarios one can expect manual testing to outperform automated testing
and vice versa. I think the simplistic view is that automation is better at
regression testing and API testing whereas manual testing is better for
acceptance testing and GUI testing. I don’t subscribe to this view at all and
think it diverts us from the real issues.

I think the reality of the problem has nothing to do with APIs or GUIs,
regression or functional. We have to start thinking about our code in terms
of business logic code or infrastructure code. Because that is the same
divide that separates manual and automated testing.

Business logic code is the code that produces the results that stakehold-
ers/users buy the product for. It’s the code that gets the job done.
Infrastructure code is the code that makes the business logic work in its
intended environment. Infrastructure code makes the business logic multi-
user, secure, localized, and so forth. It’s the platform goo that makes the
business logic into a real application.

Obviously, both types of code need to be tested. Intuitively, manual
testing should be better at testing business logic because the business logic
rules are easier for a human to learn than they are to teach to a piece of
automation. I think intuition is bang-on correct in this situation.

Manual testers excel at becoming domain experts, and they can store
very complex business logic in the most powerful testing tool around: their
brains. Because manual testing is slow, testers have the time to watch for
and analyze subtle business logic errors. Low speed but also low drag.

Automation, on the other hand, excels at low-level details. Automation
can detect crashes, hangs, incorrect return values, error codes, tripped
exceptions, memory usage, and so forth. It’s high speed but also high drag.
Tuning automation to test business logic is very difficult and risky. In my
humble opinion I think that Vista got bit by this exact issue: depending so
much on automation where a few more good manual testers would have
been worth their weight in gold.

So whether you have an API or a GUI, regress or testing fresh, the type
of testing you choose depends on what type of bug you want to find. There
may be special cases, but the majority of the time manual testing beats auto-
mated testing in finding business logic bugs, and automated testing beats
manual testing in finding infrastructure bugs.

November 2008
This was the month I spoke at EuroSTAR. After my keynote, I was told that
another speaker at the conference was quoting me: “James Whittaker sees no need
for testers in the future.” So, I felt compelled to set the record straight.

An Annotated Transcript of JW’s Microsoft Blog 199

www.it-ebooks.info

http://www.it-ebooks.info/

I gave a keynote at EuroSTAR on the future of software testing where I
began by painting a picture of the promise of software as an indispensible
tool that will play a critical role in solving some of humankind’s most vex-
ing problems. Software, I argued, provides the magic necessary to help sci-
entists find solutions for climate change, alternative energy, and global
economic stability. Without software how will medical researchers find
cures for complex diseases and fulfill the promise of the human genome
project? I made the point that software could very well be the tool that
shifts the balance of these hard problems in our favor. But what, I asked by
means of a litany of software failures, will save us from software?

Somehow as I painted my predictions of a future of software testing
that promises a departure from late cycle heroics and low quality apps,
some people got the impression that I predicted “no more testers.” How
one can latch onto a 20-second sound bite while tuning out the remainder
of a 45-minute keynote is beyond me. The U.S. elections are over, taking
sound bites out of context is no longer in season.

This blog is replete with my biases toward manual testing and my
admiration for the manual tester. If you read it and if you managed to listen
for more than a couple of minutes during my keynote, you’d have to con-
clude that I believe that the role of the tester is going to undergo fundamen-
tal change. I believe that testers will be more like test designers and that the
traditional drudgery of low level details like test case implementation, exe-
cution, and validation will be a thing of the past. Testers will work at a
higher level and be far more impactful on quality.

I quite imagine that the vast majority of testers who actually listened to
my full message will rejoice at such a future. I invite the others to take a sec-
ond read.

Software Tester Wanted
I cannot believe people actually questioned whether I was joking with this post.
Clearly, this description of a tester want ad was a little too close to the mark. I was
accused of disrespecting my employer and my discipline with this one. Frankly, I
think both the post and the reaction to it are just plain funny.

Software tester wanted. Position requires comparing an insanely com-
plicated, poorly documented product to a nonexistent or woefully incom-
plete specification. Help from original developers will be minimal and
given grudgingly. Product will be used in environments that vary widely
with multiple users, multiple platforms, multiple languages, and other such
impossibilities yet unknown but just as important. We’re not quite sure
what it means, but security and privacy are paramount and post release
failures are unacceptable and could cause us to go out of business.

Keeping Testers in Test
This is a sore point for a lot of testers at Microsoft: that many of the best testers
move to development and program management. There is a perception that it

200 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

increases promotion velocity, and it seems that perception is even stronger in other
places.

I did a webinar for UTest.com today and got some great questions. One
question seemed to really resonate: How do you keep good testers from
moving to development.

I hear this question a lot. Many engineers see Test as a training ground
for development. A testing job is just a foot in the door for a quick move to
development. Sigh.

Let’s be honest, this is not a bad thing. I think that the more developers
we have trained as testers is categorically good. They’ll write fewer bugs,
communicate with test better and generally appreciate the work their test
teams do on their behalf. I think the real sadness comes from the fact that
Test as a discipline loses so many talented people.

I am not convinced that the folks who leave are really doing so because
of the developers’ greener pastures. After all, there is a lot of code to write
as a tester and it’s often a freer coding atmosphere. I think people leave
because too many test managers are stuck in the past and living just to ship.
Everywhere I see testers move to development I see teams that lack a real
innovative spirit and the converse is most certainly true. The happiest, most
content testers are in groups that covet innovators and provide opportunity
to invent, investigate, and discover.

Want your testers to stay. Give them the opportunity to innovate. If all
you see is test cases and ship schedules, all your testers will see is the door.
Can’t say I blame them either.

December 2008
I wasn’t very busy in December blog-wise. So if you aren’t going to write much,
then use the titles that draw the readers: Google. Believe it or not, this one also
made the front page of MSDN! Talk about a formula that works.

Google Versus Microsoft and the Dev:Test Ratio Debate
Every since I gave a talk at Google’s GTAC event here in Seattle this past
October, I’ve had the chance to interact with a number of Google testers
comparing and contrasting our two companies’ approach to testing. It’s
been a good exchange.

Now it seems that, Google focuses on testing with an intensity that is in
the same general ballpark as ours. We both take the discipline and the
people who do it seriously. But I think that there are some insights into the
differences that are worth pondering.

Specifically, the disparity between our respective developer-to-tester
ratios is worth a deeper look. At Microsoft the d:t ratio varies somewhat
from near 1:1 in some groups to double or triple that in others. At Google
just the opposite seems to be the case with a single tester responsible for a

An Annotated Transcript of JW’s Microsoft Blog 201

www.it-ebooks.info

http://www.it-ebooks.info/

larger number of bug-writing devs. (Clearly we have that in common!)
So which is better? You tell me, but here are my thoughts (without

admission of any guilt on Microsoft’s part or accusations against Google):
1. 1:1 is good. It shows the importance we place on the test profession and

frees developers to think about development tasks and getting the in-
the-small programming right. It maximizes the number of people on a
project actively thinking about quality. It speeds feature development
because much of the last minute perfecting of a program can be done
by testers. And it emphasizes tester independence, minimizing the bias
that keeps developers from effectively testing their own code.

2. 1:1 is bad. It’s an excuse for developers to drop all thoughts of quality
because that is someone else’s job. Devs can just build the mainline
functionality and leave the error checking and boring parts to the
testers.

It’s interesting to note that Microsoft testers tend to be very savvy
developers and are often just as capable of fixing bugs as they are of finding
bugs. But when they do so, do devs really learn from their mistakes when
they have someone else cleaning up after them? Are testers, when talented
and plentiful, an excuse for devs to be lazy? That’s the other side of this
debate:
1 Many:1 is good. When testers are scarce, it forces developers to take a

more active role in quality and increases the testability and initial qual-
ity of the code they write. We can have fewer testers because our need
is less.

2. Many:1 is bad. It stretches testers too thin. Developers are creators by
nature and you need a certain number of people to take the negative
viewpoint or you’re going to miss things. Testing is simply too compli-
cated for such a small number of testers. Developers approach testing
with the wrong, creationist attitude and are doomed to be ineffective.

So where’s the sweet spot? Clearly there are application-specific influ-
ences in that big server apps require more specialized and numerous
testers. But is there some general way to get the mix of testers, developers,
unit testing, automated testing, and manual testing right? I think it is
important that we start paying attention to how much work there really is
in quality assurance and what roles are most impactful and where. Test
managers should be trying to find that sweet spot.

January 2009
The year 2008 ended with a now-famous bug from our Zune product. It was the
talk of the testing circles at Microsoft. We debated the bug, how it got there, and
why it was missed. This post was my take.

202 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

The Zune Issue
As you can imagine there is a pretty lively debate going on over the

Zune date math issue here in the hallways and on our internal mailing lists.
There are plenty of places one can find analyses of the bug itself, like here,
but I am more interested in the testing implications.

One take: This is a small bug, a simple comparator that was “greater
than” but should have been “greater than or equal to.” It is a classic off-by-
one bug, easily found by code review and easily fixed then forgotten.
Moreover, it wasn’t a very important bug because its lifespan was only one
day every leap year, and it only affected the oldest of our product line. In
fact, it wasn’t even our bug; it was in reused code. Testing for such prover-
bial needles is an endless proposition, blame it on the devs and ask them
not to do it again. (Don’t get your knickers in a twist, surely you can detect
the sarcasm.)

Another take: This is a big bug, in the startup script for the device and
thereby affected every user. Moreover, its effect is nothing short of bricking
the device, even if only for a day (as it turns out, music is actually a big deal
on that specific day). This is a pri-1, sev-1, run-down-the-halls-screaming-
about-it kind of bug.

As a tester can I take any view but the latter? But the bug happened.
Now we need to ask what can we learn from this bug?

Clearly, the code review that occurred on this particular snippet is sus-
pect. Every code review I have ever been part of, a check on every single
loop termination condition is a top priority, particularly on code that runs at
startup. This is important because loop termination bugs are not easily
found in testing. They require a “coming together” of inputs, state, and
environment conditions that are not likely to be pulled out of a hat by a
tester or cobbled together using unthinking automation.

This brings me to my first point. We testers don’t do a good job of check-
ing on the quality of code reviews and unit testing where this bug could
have been more easily found. If I were still a professor I would give someone
a Ph.D. for figuring out how to normalize code review results, unit test
cases, and system test cases (manual and automated). If we could aggregate
these results, we could actually focus system testing away from the parts of
the system already covered by upstream “testing.” Testers would, for once,
be taking credit for work done by devs, as long as we can trust it.

The reason that system testing has so much trouble dealing with this
bug is that the tester would have to recognize that the clock was an input
(seems obvious to many, but I don’t think it is a given), devise a way to
modify the clock (manually or as part of their automation), and then create
the conditions of the last day of a year that contained 366 days. I don’t think
that’s a natural scenario to gravitate toward even if you are specifically test-
ing date math. I can imagine a tester thinking about February 29, March 1,
and the old and new daylight savings days in both Fall and Spring. But
what would make you think to distinguish Dec 31, 2008 as any different

An Annotated Transcript of JW’s Microsoft Blog 203

www.it-ebooks.info

http://www.it-ebooks.info/

from Dec 31, 2007? Y2K seems an obvious year to choose and so would
2017, 2035, 2999, and a bunch of others, but 2008?

This brings me to my second point. During the discussions about this
bug on various internal forums, no less than a dozen people had ideas
about testing for date related problems that no one else involved in the dis-
cussions had thought of. I was struck by a hallway debate between two col-
leagues who were discussing how they would have found the bug and
what other test cases needed to be run for date math issues. Two wicked
smart testers that clearly understood the problem date math posed but had
almost orthogonal approaches to testing it!

The problem with arcane testing knowledge (security, y2k, localization
all come to mind) is that we share our knowledge by discussing it and
explaining to a tester how to do something. “You need to test leap year
boundaries” is not an ineffective way of communicating. But it is exactly
how we are communicating. What we should be doing is share our
knowledge by passing test libraries back and forth. I wish the conversation
had been: “You need to test leap year boundaries and here’s my library of
test cases that do it.” Or “Counting days is a dangerous way to implement
date math, when you find your devs using that technique, run these specific
test cases to ensure they did it right.”

The testing knowledge it took to completely cover the domain of this
specific date math issue was larger than the set of folks discussing it. The
discussion, while educational and stimulating, isn’t particularly trans-
portable to the test lab. Test cases (or models/abstractions thereof) are trans-
portable, and they are a better way to encapsulate testing knowledge. If we
communicated in terms of test cases, we could actually accumulate knowl-
edge and spread it to all corners of the company (we have a lot of apps and
devices that do date math) much faster than sitting around explaining the
vagaries of counting time. Someone who didn’t understand the algorithms
to count time could still test it using the test assets of someone else who did
understand it.

Test cases, reusable and reloadable, are the basis for accumulated
knowledge in software testing. Testing knowledge is simply far too distrib-
uted across various experts’ heads for any other sharing mechanism to
work.

Exploratory Testing Explained
As I got closer to finishing this book, I ramped up my exploratory testing rhetoric
and began looking for skeptics who would help me find flaws and improve it. One
thing you can say about Microsoft is that we have our share of skeptics. This post
came as a result of debating and learning from such skeptics. Even though it is
pretty vanilla flavored, it has been a reader favorite.

I just finished talking (actually the conversation was more like a debate)
to a colleague, exploratory testing critic, and a charter member of the plan-
first-or-don’t-bother-testing-at-all society.

204 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

I am happy to say, he conceded the usefulness (he would not grant
superiority) of exploratory testing. Perhaps I have finally found a useful
explanation of the efficacy of exploration. Here’s what I said:

“Software testing is complicated by an overload of variation possibili-
ties from inputs and code paths to state, stored data and the operational
environment. Indeed, whether one chooses to address this variation in
advance of any testing by writing test plans or by an exploratory approach
that allows planning and testing to be interleaved, it is an impossible task.
No matter how you ultimately do testing, it’s simply too complex to do it
completely.

However, exploratory techniques have the key advantage that they
encourage a tester to plan as they test and to use information gathered dur-
ing testing to affect the actual way testing is performed. This is a key advan-
tage over plan-first methods. Imagine trying to predict the winner of the
Super Bowl or Premier League before the season begins…this is difficult to
do before you see how the teams are playing, how they are handling the
competition, and whether key players can avoid injury. The information
that comes in as the season unfolds holds the key to predicting the outcome
with any amount of accuracy. The same is true of software testing and
exploratory testing embraces this by attempting to plan, test, and replan in
small ongoing increments guided by full knowledge of all past and current
information about how the software is performing and the clues it yields in
the testing results.

Testing is complex, but effective use of exploratory techniques can help
tame that complexity and contribute to the production of high quality soft-
ware.”

Test Case Reuse
I got an email from Capers Jones on this one urging me to consider reuse of other
artifacts like specs and design, and so on. I like getting email from famous people.
But dude (may I call you dude, Mr. Jones?), I am a tester. Someone else needs to
think about reuse in those spaces.

I’ve given my “future of testing” talk four times (!) this week and by far
the part that generates the most questions is when I prophesize about test
case reuse. Given that I answered it differently all four times (sigh), I want
to use this space to clarify my own thinking and to add some specifics.

Here’s the scenario: One tester writes a set of test cases and automates
them so that she can run them over and over again. They are good test
cases, so you decide to run them as well. However, when you do run them,
you find they won’t work on your machine. Your tester friend used
automation APIs that you don’t have installed on your computer and
scripting libraries that you don’t have either. The problem with porting test
cases is that they are too specific to their environment.

In the future we will solve this problem with a concept I call environ-
ment-carrying tests (nod to Brent Jensen). Test cases of the future will be

An Annotated Transcript of JW’s Microsoft Blog 205

www.it-ebooks.info

http://www.it-ebooks.info/

written in such a way that they will encapsulate their environment needs
within the test case using virtualization. Test cases will be written within
virtual capsules that embed all the necessary environmental dependencies
so that the test case can run on whatever machine you need it to run on.

The scope of technological advances we need for this to happen are
fairly modest. However, the Achilles heel of reuse has never been techno-
logical so much as economic. The real work required to reuse software arti-
facts has always been on the consumer of the reused artifact and not on its
producer. What we need is an incentive for testers to write reusable test
cases. So, what if we create a “Testipedia” that stored test cases and paid the
contributing tester, or their organization, for contributions? What is a test
case worth? A dollar? Ten dollars? More? Clearly they have value, and a
database full of them would have enough value that a business could be
created to host the database and resell test cases on an as-needed basis. The
more worthy a test case, the higher its value and testers would be incen-
tivized to contribute.

Reusable test cases will have enough intrinsic value that a market for
test case converters would likely emerge so that entire libraries of tests
could be provided as a service or licensed as a product.

But this is only part of the solution. Having test cases that can be run in
any environment is helpful, but we still need test cases that apply to the
application we want to test. As it turns out, I have an opinion on this and
I’ll blog about it next.

More About Test Case Reuse
We mostly write test cases that are specifically tied to a single application.
This shouldn’t come as any big surprise given that we’ve never expected
test cases to have any value outside our immediate team. But if we want to
complete the picture of reusable test cases that I painted in my last post, we
need to write test cases that can be applied to any number of different apps.

Instead of writing a test case for an application, we could move down a
level and write them for features instead. There are any number of web
applications, for example, that implement a shopping cart, so test cases
written for such a feature should be applicable to all such apps. The same
can be said of many common features like connecting to a network, making
SQL queries to a database, username and password authentication, and so
forth. Feature-level test cases are far more reusable and transferable than
application-specific test cases.

The more focused we make the scope of the test cases we write, the
more general they become. Features are more focused than applications,
functions and objects are more focused than features, controls and data
types are more focused than functions, and so forth. At a low enough level,
we have what I like to call “atomic” test cases. A test atom is a test case that
exists at the lowest possible level of abstraction. Perhaps you’d write a set
of test cases that simply submits alphanumeric input into a text box control.

206 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

It does one thing only and doesn’t try to be anything more. You may then
replicate this test atom and modify it for different purposes. For example, if
the alphanumeric string in question is intended to be a username; then a
new test atom that encoded the structure of valid usernames would be
refined from an existing atom. Over time thousands (and hopefully orders
of magnitude more) of such test atoms would be collected.

Test atoms can be combined into test molecules. Two alphanumeric
string atoms might be combined into a test molecule that tests a username
and password dialog box. I can see cases where many independent test
authors would build such molecules and then over time the best such mole-
cule would win out and yet the alternatives would still be available. With
the proper incentives, test case authors would build any number of mole-
cules that could then be leased or purchased for reuse by application ven-
dors that implement similar functionality.

At some point, enough test atoms and molecules would exist that the
need to write new, custom tests would be minimal. I think that Wikipedia, a
site with user supplied, policed, and maintained content, would be what
the industry would need to store all these tests. Perhaps such a community
Testipedia can be constructed or companies can build their own internal
Testipedias for sensitive applications. But a library of environment-carrying
(see my last post) test atoms and molecules would have incredible value.

A valuable extension of this idea is to write atoms and molecules in
such a way that they will understand whether they apply to an application.
Imagine highlighting and then dragging a series of ten thousands tests onto
an application and having the tests themselves figure out whether they
apply to the application and then running themselves over and over within
different environments and configurations.

Ah, but now I am just dreaming.

I’m Back
I got email from a number of former students (it’s so nice that they continue to fol-
low my work even now when I can no longer grade them) who remember my post-
vacation intensity. Time to think is very important for those of us in a position to
make work for other people with those thoughts!

When you’re on vacation do you think about work? Not thoughts of
dread, worry, or angst but reflection, planning, and problem solving. I just
did. Last Sunday I awoke in Seattle to freezing temps and a dusting of
snow. By midday I was building a sandcastle on Ka’anapali Beach, Maui,
in 79 degree sunshine. If that’s not getting away from it all, I don’t know
what is.

Yet my mind wasn’t really away. In fact, I thought about work all the
time. Given that software was everywhere I looked, it’s not hard to see why.
My entire trip was booked online, even the taxi to the airport. Not a single
person besides myself took part in the process. Just me…and a load of soft-
ware.

An Annotated Transcript of JW’s Microsoft Blog 207

www.it-ebooks.info

http://www.it-ebooks.info/

The taxi cab itself contained software, as did the airplane. The baggage
carousel, the espresso machine, the car rental counter (no person there, just
a self serve terminal), and even the surveillance camera that watched my
son juggle his soccer ball while I packed our bags in the trunk. All alone,
except for the software. Even the frozen concoction machine had software
that helped it maintain the right temperature. (It broke, incidentally, making
me thankful that I am a beer drinker.)

Is it possible for anyone in this field to really get away from it all?
(Don’t get me started on the motion sensors that control the air condition-
ing in the hotel room. I’m all for turning them off when they are not in use,
but apparently sitting still and being cool was not one of their end-to-end
scenarios.)

The truth of the matter is that getting away from it all just isn’t neces-
sary for me. I like seeing software in action and I enjoy brooding over prob-
lems of testing it. Vacations free my mind from the daily grind and leave
my mind to question things that back home I might overlook. Does this
make me work obsessed or just indicate that I really like what I do?

Vacations have always been like this for me. When I was a professor,
two students who led my research lab, Ibrahim El-Far and Scott Chase,
actually avoided me when I returned from a trip, afraid of the work my
new insights would bring. They never quite managed to successfully do so.

Which brings me back to the motion sensor in my room. The problem
isn’t so much a poor tester, rather poor testing guidance. The sensor does
exactly what it is designed to do and testing it based on those requirements
got me in the sit-and-sweat loop. The problem is that no one thought to
give it a field try…what I call “day in the life” testing. Had the tester
thought to take the sensor through a 24-hour cycle of usage they would
have identified that problematic ten-hour period (yes, ten, it’s a vacation
after all) when motion is low and the desire to be cool is high. But what tool
gives such guidance? Modern tools help testers in many ways, but helping
them think of good test scenarios isn’t one of them. They help us organize,
automate, regress, and so forth, but do they really help us to test?

That’s the tool I want. Tomorrow, when I return, I am going to direct
someone to build it for me. Ibrahim and Scott, you are off the hook this
time.

Of Moles and Tainted Peanuts
There was a full page ad for Jif peanut butter in my morning paper that
caught my attention. (For those non-U.S. readers, our nation is experiencing
a salmonella bacteria outbreak that has been traced back to contaminated
peanuts.) The ad touted Jif’s rigorous testing processes and reassured read-
ers that testing for salmonella was a long-time habit for the Jif company,
and we should feel confident in consuming their products.

208 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

Now clearly peanut butter is not software. I very much doubt that the
processes for making peanut butter have changed much over the past few
decades. I also imagine that one batch of peanut butter is about the same as
the last batch. I concede that we have a harder problem.

But the term “long-time habit” really caught me. Because I haven’t seen
too many long-term habits established in the testing industry. We plan tests,
write test cases, find bugs, report bugs, use tools, run diagnostics, and then
we get a new build and start the process all over again. But how much do
we learn in the process? How much do we retain from one build to the
next? Are we getting better each time we test? Are we getting better pur-
posefully or are we just getting more experienced? In many ways, the only
real repository of historical wisdom (those long-term habits of Jif) is embod-
ied in our tools.

My friend Alan Page likens testing to playing whack-a-mole. You know
the one: Chuck a quarter in and plastic moles pop up through a random
sequence of holes and you whack them on the head with a mallet. Whack
one, another appears, and even previously whacked moles can pop up
again requiring additional mallet treatment. It’s a never ending process, just
add quarters.

Sounds familiar? Testing is whack-a-mole with developers applying the
quarters liberally. Now, defect prevention notwithstanding, we can take a
lesson from Jif. They understand that certain risks are endemic to their busi-
ness, and they’ve designed standard procedures for mitigating those risks.
They’ve learned how to detect salmonella, and they have wired those tests
into their process.

Have we paid enough attention to our history that we can codify such
routine test procedures and require their consistent application?

Clearly software is not peanut butter. Every piece of software is differ-
ent; Office’s salmonella is likely irrelevant to Windows and vice versa. But
that is no excuse to play whack-a-mole with bugs. We have to get better.
Perhaps we can’t codify a salmonella testing procedure into a cookbook
recipe, but we can start being more proactive with the whole business of
learning from our mistakes.

I propose that testers take a break from finding bugs and just take some
time to generalize. When the bug pops its head from some coded hole,
resist the temptation to whack it. Instead, study it. How did you find it?
What was it that made you investigate that particular part of the app? How
did you notice the hole and what was happening in the app that caused the
bug to pop out? Is the test case that found the bug generalizable to find
more bugs similar to the one you are ready to whack? Is there some advice
you could pass along to other testers that would help them identify such
holes?

In other words, spend part of your time testing the current product you
are trying to ship. Spend the rest of the time making sure you learn to test
the next product better. There is a way to do this, a metaphor we use here at
Microsoft to help.

An Annotated Transcript of JW’s Microsoft Blog 209

www.it-ebooks.info

http://www.it-ebooks.info/

I’ll discuss the metaphor and how we apply it to form long-time habits,
peanut butter style, in my next post.

And that’s where I end this annotated posting and the exact place where this
book begins. The metaphor I speak of is the tourist metaphor, which is presented in
the pages of this book, primarily Chapter 4, “Exploratory Testing in the Large.”

210 Exploratory Software Testing

www.it-ebooks.info

http://www.it-ebooks.info/

A Fault to Guide Software Testing

010010101011011000100100100101010110110001001001001010101

Index
A
abstract input, 24
accelerating your testing career,

141-142
through repetition, 139
through technique, 139-140

adding steps to scenarios, 68-69
after-hours tour, business district, 50
after-hours Zune bug, 50
aimlessness of software testing,

relieving, 114-116
all-nighter tour, 74

entertainment district, 55
antisocial tour, seedy district, 60-61
applying

scenario-based exploratory
testing, 67

Wikipedia concept to testing, 126
test atoms, 128
test case reuse, 127
test molecules, 128

arrogant American tour, 48
The Art of Software Testing, 157
atomic input, 24
atomic test cases, 206
August 2008 blog entries

If Microsoft Is So Good at Testing,
Why Does Your Software Still
Suck?, 180-182

The Future of Testing (Part 1), 185

The Future of Testing (Part 2), 187
Prevention vs. Cure (Part 4),

179-180
Prevention vs. Cure (Part 5), 183

autism, facilitating communication
with software, 2

B
back alley tour, 73

entertainment district, 53-54
Visual Studio, 104-105
supermodel tours with, 84

Back to Testing, JW’s July 2008 blog
entry, 177-178

bad neighborhood tour, historical
district, 51

blockaded taxicab tours, Dynamics
AX client, 80-81

blog entries
August 2008

The Future of Testing (Part 1),
185-186

The Future of Testing
(Part 2), 187

If Microsoft Is So Good at
Testing, Why Does Your
Software Still Suck?, 180-182

Prevention vs. Cure (Part 4),
179-180

Prevention vs. Cure
(Part 5), 183

www.it-ebooks.info

http://www.it-ebooks.info/

December 2008, Google vs.
Microsoft and the Dev:Test Ratio
Debate, 201-202

January 2009
Exploratory Testing Explained,

204-205
I’m Back, 207-208
Test Case Reuse, 205-206
The Zune Issue, 203-204

July 2008, 166
Back to Testing, 177-178
Hail Europe!, 174
measuring testers, 168-169
PEST, 167-168
The Poetry of Testing, 175-176
Prevention vs. Cure

(Part 1), 170
Prevention vs. Cure (Part 2),

173-174
Prevention vs. Cure (Part 3),

176-177
Users and Johns, 170-172

November 2008
Keeping Testers in a Test, 201
Software Tester Wanted, 200

October 2008
Manual vs. Automated Testing

Again, 198-199
Speaking of Google, 198
The Future of Testing (Part 6),

194-195
The Future of Testing (Part 7),

195-196
The Future of Testing (Part 8),

197-198

September 2008
The Future of Testing (Part 3),

189, 191
The Future of Testing (Part 4),

191-192
The Future of Testing (Part 5),

192-193
On Certification, 188-189

Software testing ten
commandments, 143-149

boundary subtours, intellectual tours
and, 103

breaking software tours, Visual
Studio, 104

Brown, Shawn
three-hour tours, 95-96
Windows Mobile device tours, 90

rained-out tours, 92
saboteurs, 93-94
supermodel tours, 93-94
testing approach/philosophy,

91-92
WMP tours

garbage collector tours, 97-99
intellectual tours, 100, 102-103
supermodel tours, 100
“What If?” questions during

manual tests, 100-101
bugs, 4-9

bug finding tours
FedEx tours, 89
rained-out tours, 87
saboteurs, 88
test case management

solutions, 86

212 Index

www.it-ebooks.info

http://www.it-ebooks.info/

TOGOF tours, 90
detecting, 13-14
Dynamics AX client

blockaded taxicab tours, 81
multicultural tours, 82-84
taxicab tours, 82

origin of, 11
preventing, 12-13
process improvement, 156
tools for eliminating, 155-157

business district in touring metaphor,
45-46

after-hours tour, 50
FedEx tour, 49
garbage collector’s tour, 51
intellectual tour, 48-49
landmark tour, 47-48
money tour, 46-47

C
career in testing

ascent, 139-140
descent, 142
obtaining, 137-138
summit, 140-142

categories of software users, 158
certification, JW’s September 2008

blog entry, 188-189
checks, input checks, 28-29
Clarke, Arthur C., 1
code paths, 35
collector’s tour, 74

tourist district, 55-56

continuing education, focus on as
reason for respect, 153

Copeland, Lee, 170
couch potato tour, hotel district, 59
The Craft of Software Testing, 157
Crick, Francis, 1
crime spree tour of seedy district, 61
crowdsourcing, 185

D
data substitution, 70-71
December 2008 blog entry, Google vs.

Microsoft and the Dev:Test Ratio
Debate, 201-202

default versus user-supplied input,
30-31

defining tests
methods, 116
targets, 115
time, 115-116

deoxyribonucleic acid (DNA), 1
detecting bugs, 13-14
developers, weaknesses as testers, 12
districts in touring metaphor, 44

business district, 45-46
after-hours tour, 50
FedEx tour, 49
garbage collector’s tour, 51
intellectual tour, 48-49
landmark tour, 47-48
money tour, 46-47

entertainment district
all-nighter tour, 55

Index 213

www.it-ebooks.info

http://www.it-ebooks.info/

back alley tour, 53-54
supporting actor tour, 53

historical district
bad-neighborhood tour, 51
museum tour, 52
prior version tour, 52

hotel district
couch potato tour, 59
rained-out tour, 58-59

seedy district
antisocial tour, 60-61
obsessive-compulsive tour, 62
saboteur tour, 60

tourist district
collector’s tour, 55-56
lonely businessman tour, 56
Scottish pub tour, 57
supermodel tour, 57
TOGOF tour, 57

DNA (deoxyribonucleic acid), 1
Dynamics AX client, touring, 78

blockaded taxicab tours, 80-81
landmark tours, 85
multicultural tours, 80

collected bugs, 82-84
rained-out tours, 85
supermodel tours, 84
taxicab tours, 79, 82

E
educational background as reason for

respect, 153
eliminating buggy software, 157

through formal methods, 155

through process improvement, 156
through tools, 155

Elizondo, David Gorena, 54
bug finding tours, 86

FedEx tours, 89
rained-out tours, 87
saboteurs, 88
test case management

solutions, 86
TOGOF tours, 90

entertainment district in touring
metaphor

all-nighter tour, 55
back alley tour, 53-54
supporting actor tour, 53

environment, 36-37
environment substitution, 71-72
environment-carrying tests, 127
error code, testing, 149-151
error handlers, 150

exception handlers, 29
input checks, 28-29
input filters, 27-28

Excel, bugs, 5
excellence, insistence on as reason for

respect, 152
exception handlers, 29, 150
exoplanets, 2
exploratory testing, 180

benefits/drawbacks, 16
combining with script-based

testing, 18-19
definition of, 16
exploratory testing in the large, 18
exploratory testing in the small.

See exploratory testing in the
small

214 Index

www.it-ebooks.info

http://www.it-ebooks.info/

Exploratory Testing Explained, JW’s
January 2009 blog entry, 204-205

exploratory testing in the small
code paths, 35
definition of, 17
environment, 36-37
overview, 21-23
software state, testing, 35

definition of state, 32-33
temporary versus persistent

state, 34
user data, 36
user input, testing, 23

abstract input, 24
atomic input, 24-25
default versus user-supplied

input, 30-31
definition of user input, 24
guiding input selection with

outputs, 31-32
input sequences, 25
legal versus illegal input,

26-29
normal versus special input,

29-30
extrasolar planets, 2

F
failure of software, 4-9
feature testing, 43, 62
FedEx tour

business district, 49
bug finding tours, 89

feedback-based exploratory
testing, 184

filters, input filters, 27-28
finding bugs, 86

FedEx tours, 89
rained-out tours, 87
saboteurs, 88
test case management

solutions, 86
TOGOF tours, 90

formal methods for eliminating buggy
software, 155

freestyle exploratory testing, 183
functional code, 149
future of software testing, 123-124,

132-134
THUD, 125-126

The Future of Testing (Part 1), JW’s
August 2008 blog entry, 185

The Future of Testing (Part 2), JW’s
August 2008 blog entry, 187

The Future of Testing (Part 3), JW’s
September 2008 blog entry, 189, 191

The Future of Testing (Part 4), JW’s
September 2008 blog entry, 191-192

The Future of Testing (Part 5), JW’s
September 2008 blog entry, 192-193

The Future of Testing (Part 6), JW’s
October 2008 blog entry, 194-195

The Future of Testing (Part 7), JW’s
October 2008 blog entry, 195-196

The Future of Testing (Part 8), JW’s
October 2008 blog entry, 197-198

Index 215

www.it-ebooks.info

http://www.it-ebooks.info/

G
garbage collector tours

business district, 51
Visual Studio, 105
WMP (Windows Media Player),

97-99
ghost hunting as software testing

metaphor, 40
goals of exploratory software testing,

40-41
Google vs. Microsoft and the Dev:Test

Ratio Debate, JW’s December 2008
blog entry, 201-202

GTO (Games Test Organization), 141

H
Hail Europe!, JW’s July 2008 blog

entry, 174
Haugen, Nicole, 54

Dynamics AX client, touring, 78
blockaded taxicab tours, 80-81
landmark tours, 85
multicultural tours, 80-84
rained-out tours, 85
supermodel tours, 84
taxicab tours, 79, 82

Hetzel, Bill, 138
historical district in touring metaphor

bad neighborhood tour, 51
museum tour, 52
prior version tour, 52

Hopper’s moth, 11
hotel district in touring metaphor

couch potato tour, 59
rained-out tour, 58-59

How to Break Software (Whittaker), 17,
39, 138

Human Genome Project, 1
hybrid exploratory testing

techniques, 65
scenario-based testing, 66

applying, 67
scenario operators, 68-72
tours, 72-75

I
If Microsoft Is So Good at Testing, Why

Does Your Software Still Suck?, JW’s
August 2008 blog entry, 180-182

I’m Back, JW’s January 2009 blog
entry, 207-208

illegal input, testing, 26
exception handlers, 29
input checks, 28-29
input filters, 27-28

infinite loops, Zune bug, 50
injections of variation, 117-118
input (user). See user input
input checking, 28-29, 150
input filters, 27-28, 150
input sequences, 25
input type, properties, 151
inserting steps in scenarios, 68-69
insourcing, 185
intellectual tour, 73

boundary subtours and, 102-103
business district, 48-49
WMP (Windows Media Player),

100-103
intent, tours of, 108

216 Index

www.it-ebooks.info

http://www.it-ebooks.info/

J
January 2009 blog entries

Exploratory Testing Explained,
204-205

I’m Back, 207-208
Test Case Reuse, 205-206
The Zune Issue, 203-204

July 2008 blog entries, 166
Back to Testing, 177-178
Hail Europe!, 174
Ode to the Manual Tester, 171-172
PEST, 167-169
The Poetry of Testing, 175-176
Prevention vs. Cure (Part 1), 170
Prevention vs. Cure (Part 2),

173-174
Prevention vs. Cure (Part 3),

176-177
Users and Johns, 170

K–L
Keeping Testers in a Test, JW’s October

2008 blog entry, 201
Kulawiec, Rich, 21

Ladd, David, 178
landmark tour, 73

business district, 47-48
Dynamics AX client, 85

Larius, Jim, 168
legal versus illegal input, 26-29
lonely businessman tour, tourist

district, 56

M
manual testing, 179

combining with exploratory
testing, 18-19

definition of, 14-15
scripted manual testing, 15

Manual vs. Automated Testing Again,
JW’s October 2008 blog entry,
198-199

Marick, Brian, 170
mastering software testing, 158-159
measuring testers, JW’s July 2008 blog

entry, 168-169
memorylessness of software testing,

relieving, 120-121
metaphors for scenario-based

exploratory software testing,
tourist metaphor, 41-43

Microsoft
GTO, 141
“Watson,” 129

Mills, Harlan, 168
mixed-destination tour, 54
money tour, 73

business district, 46-47
Visual Studio, 104

monotony of software testing,
relieving, 119-120

morning-commute tour, 50
Muharsky, Joe Allan, 190
multicultural tours, Dynamics AX

client, 80-84
museum tour, historical district, 52

Index 217

www.it-ebooks.info

http://www.it-ebooks.info/

N–O
Newton, Isaac, 2
normal versus special input, 29-30
November 2008 blog entry

Keeping Testers in a Test, 201
Software Tester Wanted, 200

obsessive-compulsive tour, 73, 96
seedy district, 62
Visual Studio, 104

October 2008 blog entries
The Future of Testing (Part 6),

194-195
The Future of Testing (Part 7),

195-196
The Future of Testing (Part 8),

197-198
Manual vs. Automated Testing

Again, 198-199
Speaking of Google, 198

Ode to the Manual Tester, JW’s July
2008 blog entry, 171-172

On Certification, JW’s September 2008
blog entry, 188-189

opposite tour of seedy district, 61
origin of software bugs, 11
Outlook (Microsoft), bugs, 7
outputs, guiding input selection with,

31-32
outsourcing, 185

P
Page, Alan, 209
pain points of software testing, 113

aimlessness, relieving, 114-116
memorylessness, relieving,

120-121
monotony, relieving, 119-120
repetitiveness, relieving, 116-118
transiency, relieving, 118-119

parking lot tours, Visual Studio,
103-105

Perlis, Alan J., 11
persistent outputs, 32
persistent state, 34
PEST (Pub Exploration and Software

Testing), JW’s July 2008 blog entry,
167-168

The Poetry of Testing, JW’s July 2008
blog entry, 175-176

post-release testing, 134
preventing bugs, 12-13
Prevention vs. Cure (Part 1), JW’s

July 2008 blog entry, 170
Prevention vs. Cure (Part 2), JW’s

July 2008 blog entry, 173-174
Prevention vs. Cure (Part 3), JW’s

July 2008 blog entry, 176-177
Prevention vs. Cure (Part 4), JW’s

August 2008 blog entry, 179-180
Prevention vs. Cure (Part 5), JW’s

August 2008 blog entry, 183
prior version tour, historical

district, 52
process improvement, eliminating

buggy software, 156
properties of input type, 151

218 Index

www.it-ebooks.info

http://www.it-ebooks.info/

Q–R
quality, focus on as reason for

respect, 152
Quality Quest, 167

rained-out tour, 75
bug finding tours, 87
hotel district, 58-59
Dynamics AX client, 85
Windows Mobile devices, 92

regression tests, 117
relieving pain points of

software testing
aimlessness, 114

test method, defining, 116
test targets, defining, 115
test time, defining, 115-116

memorylessness, 120-121
monotony, 119-120
repetitiveness, 116

injections of variation, 117-118
transiency, 118-119

removing steps from scenarios, 69
repeatability, 62
repeating steps in scenarios, 70
repetitive nature of software

testing, 139
relieving, 116-118

replacing steps in scenarios, 70
respect for test community, reasons

for, 152-154
restoring respect to software industry,

160-161
reusability, 186
Ridley, Matt, 178

S
saboteur tour, seedy district, 60
saboteurs, 74, 96

bug finding tours, 88
Windows Mobile devices, 93-94

scenario operators
data substitution, 70-71
environment substitution, 71-72
steps, inserting, 68-69
steps, removing, 69
steps, repeating, 70
steps, replacing, 70

scenario-based exploratory testing,
65-66, 183

applying, 67
scenario operators

data substitution, 70-71
environment substitution,

71-72
steps, inserting, 68-69
steps, removing, 69
steps, repeating, 70
steps, replacing, 70

tourist metaphor, 41-43, 72
all-nighter tour, 74
back alley tour, 73
collector’s tour, 74
intellectual tour, 73
landmark tour, 73
money tour, 73
obsessive-compulsive tour, 73
rained-out tour, 75
saboteur, 74
supermodel tour, 74
supporting actor tour, 75
tour-crasher tour, 75

Index 219

www.it-ebooks.info

http://www.it-ebooks.info/

scope, 34
Scottish pub tour, tourist district, 57
scripted manual testing, 179

combining with exploratory
testing, 18-19

overview, 15
seedy district in touring metaphor

antisocial tour, 60-61
obsessive-compulsive tour, 62
saboteur tour, 60

September 2008 blog entries
On Certification, 188-189
The Future of Testing (Part 3),

189-191
The Future of Testing (Part 4),

191-192
The Future of Testing (Part 5),

192-193
Sherman, Roger, 196
Shostack, Adam, 57
skeptical customer tour, 47
software. See also software testing

at rest, difficulties in testing, 12
failure of, 4-9
importance of, 1-4
state, testing, 32-35

definition of state, 32-33
temporary versus persistent

state, 34
users, categories of, 158
visualization, 130-132

software industry, restoring respect to,
160-161

Software Tester Wanted, JW’s
October 2008 blog entry, 200

software testing
as discipline, 157-159
future of, 132-134

source code, visualization, 130
Speaking of Google, JW’s October 2008

blog entry, 198
special input, testing, 29-30
Staneff, Geoff, 54

test planning/managing via
tours, 107

landscape, defining, 106
tour results, analyzing,

109-111
tours, running, 109
tours of intent, 108

Visual Studio tours
back alley tours, 104-105
breaking software tours, 104
garbage collector tours, 105
money tours, 104
obsessive-compulsive

tours, 104
parking lot tours, 103-105
supermodel tours, 105

state, testing, 35
definition of state, 32-33
temporary versus persistent

state, 34
strategy-based exploratory

testing, 184
substituting

data, 70-71
environment, 71-72

220 Index

www.it-ebooks.info

http://www.it-ebooks.info/

supermodel tours, 74, 96
back alley\mixed destination

tours with, 84
Dynamics AX client, 84
supporting actor tours with, 84
tourist district, 57
Visual Studio, 105
Windows Mobile devices, 93-94
WMP (Windows Media

Player), 100
supporting actor tour, 75

entertainment district, 53
supermodel tours with, 84

T
taxicab tours, Dynamics AX client, 79

blockaded taxicab tours, 80-81
collected bugs, 82

technique, importance of, 139-140
temporary state, 34
ten commandments of software

testing, 143-149
test assets, virtualization, 129
test atoms, 128, 206
test case mangement, bug finding

tours, 86
Test Case Reuse, JW’s January 2009

blog entry, 205-207
test molecules, 128, 207
testing

error code, 149-151
planning/managing via tours

analyzing tour results,
109-110

defining landscape, 106

reporting tour results, 110-111
running tours, 109
tours of intent, 108

Windows Mobile device tours
rained-out tours, 92
saboteurs, 93-94
supermodel tours, 93-94
testing approach/philosophy,

91-92
Testipedia, 126

test atoms, 128
test case reuse, 127
test molecules, 128

testsourcing, 186
three-hour tours, 95-96
THUD (tester’s heads-up display),

125-126
TOGOF tours

bug finding tours, 90
tourist district, 57

tools
eliminating buggy software, 155
visualization tools, 130

tour-crasher tour, 75
touring metaphor for scenario-based

exploratory software testing, 41-43
back alley tours

Visual Studio, 104-105
supermodel tours with, 84

blockaded taxicab tours,
Dynamics AX client, 80-81

breaking software tours, Visual
Studio, 104

bug finding tours
FedEx tours, 89
rained-out tours, 87

Index 221

www.it-ebooks.info

http://www.it-ebooks.info/

saboteurs, 88
test case management

solutions, 86
TOGOF tours, 90

Dynamics AX client, 78
blockaded taxicab tours, 80-81
landmark tours, 85
multicultural tours, 80-84
rained-out tours, 85
supermodel tours, 84
taxicab tours, 79, 82

FedEx tours, bug finding tours, 89
garbage collector tours

Visual Studio, 105
WMP (Windows Media

Player), 97-99
in scenarios, 72-75
intellectual tours

boundary subtours and, 103
WMP, 100-103

landmark tours, Dynamics AX
client, 85

money tours, Visual Studio, 104
multicultural tours, Dynamics AX

client, 80-84
obsessive-compsulsive tours, 96

Visual Studio, 104
parking lot tours, Visual Studio,

103-105
putting to use, 62
rained-out tours

bug finding tours, 87
Dynamics AX client, 85
Windows Mobile devices, 92

software “districts,” 44
business district, 45-51
entertainment district, 53-55
historical district, 51-52
hotel district, 58-59
seedy district, 60-62
tourist district, 55-57

supermodel tours, 96
back alley/mixed destination

tours with, 84
Dynamics AX client, 84
supporting actor tours

with, 84
Visual Studio, 105
Windows Mobile devices,

93-94
WMP, 100

supporting actor tours,
supermodel tours with, 84

taxicab tours, Dynamics AX client,
79, 82

test planning/managing via,
107-109

analyzing tour results,
109-110

landscape, defining, 106
reporting tour results, 110-111
running tours, 109
tours of intent, 108

three-hour tours, 95-96
TOGOF tours, bug finding

tours, 90
tours of intent, 108
Windows Mobile devices, 90

rained-out tours, 92
saboteurs, 93-94

222 Index

www.it-ebooks.info

http://www.it-ebooks.info/

supermodel tours, 93-94
testing approach/philosophy,

91-92
WMP, 97

garbage collector tours, 97-99
intellectual tours, 100-103
supermodel tours, 100

tourist district in touring metaphor
collector’s tour, 55-56
lonely businessman tour, 56
Scottish pub tour, 57
supermodel tour, 57
TOGOF tour, 57

transiency of software testing, 118-119

U
user data, 36
user input, testing, 23

abstract input, 24
atomic input, 24-25
default versus user-supplied

input, 30-31
definition of user input, 24
guiding input selection with

outputs, 31-32
input sequences, 25
legal versus illegal input, 26-29

exception handlers, 29
input checks, 28-29
input filters, 27-28

normal versus special input, 29-30
testing, 30-31

Users and Johns, JW’s July 2008 blog
entry, 170

V
van de Kamp, Peter, 2
virtualization, 186-187
virtualization of test assets, 129
Visual Studio

back alley tours, 104-105
breaking software tours, 104
garbage collector tours, 105
money tours, 104
obsessive-compulsive tours, 104
parking lot tours, 103-105
supermodel tours, 105

visualization, 130-132

W–Z
Watson, 129
Watson, James, 1
whack-a-mole analogy to testing, 209
“What If?” questions, WMP tests,

100-101
Whittaker, James, blog entries

August 2008
If Microsoft Is So Good at

Testing, Why Does Your
Software Still Suck?, 180-182

The Future of Testing
(Part 1), 185

The Future of Testing
(Part 2), 187

Prevention vs. Cure (Part 4),
179-180

Prevention vs. Cure
(Part 5), 183

Index 223

www.it-ebooks.info

http://www.it-ebooks.info/

December 2008, Google vs.
Microsoft and the Dev:Test Ratio
Debate, 201-202

January 2009
Exploratory Testing Explained,

204-205
I’m Back, 207-208
Test Case Reuse, 205-206
The Zune Issue, 203-204

July 2008, 166
Back to Testing, 177-178
Hail Europe!, 174
testers, measuring, 168-169
Ode to the Manual Tester,

171-172
PEST, 167-168
The Poetry of Testing, 175-176
Prevention vs. Cure

(Part 1), 170
Prevention vs. Cure (Part 2),

173-174
Prevention vs. Cure (Part 3),

176-177
Users and Johns, 170

November 2008
Keeping Testers in a Test, 201
Software Tester Wanted, 200

October 2008
The Future of Testing (Part 6),

194-195
The Future of Testing (Part 7),

195-196
The Future of Testing (Part 8),

197-198
Manual vs. Automated Testing

Again, 198-199
Speaking of Google, 198

September 2008
The Future of Testing (Part 3),

189, 191
The Future of Testing (Part 4),

191-192
The Future of Testing (Part 5),

192-193
On Certification, 188-189

Wikipedia concept, applying to
testing, 126

test atoms, 128
test case reuse, 127
test molecules, 128

Windows Mobile devices
tours in, 90

rained-out tours, 92
saboteurs, 93-94
supermodel tours, 93-94
testing approach/philosophy,

91-92
WMP (Windows Media Player), 97

garbage collector tours, 97-99
Intellectual tours, 100, 102-103
Supermodel tours, 100
“What If?” questions during

manual tests, 100-101
World of Warcraft, 125

Zune bug, 50
The Zune Issue, JW’s January 2009 blog

entry, 203-204

224 Index

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

Register the Addison-Wesley, Exam

Cram, Prentice Hall, Que, and

Sams products you own to unlock

great benefits.

To begin the registration process,

simply go to informit.com/register
to sign in or create an account.

You will then be prompted to enter

the 10- or 13-digit ISBN that appears

on the back cover of your product.

informIT.com
THE TRUSTED TECHNOLOGY LEARNING SOURCE

Addison-Wesley | Cisco Press | Exam Cram

IBM Press | Que | Prentice Hall | Sams

SAFARI BOOKS ONLINE

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE

INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS

Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, Prentice Hall

Professional, Que, and Sams. Here you will gain access to quality and trusted content and

resources from the authors, creators, innovators, and leaders of technology. Whether you’re

looking for a book on a new technology, a helpful article, timely newsletters, or access to

the Safari Books Online digital library, InformIT has a solution for you.

Registering your products can unlock

the following benefits:

• Access to supplemental content,

including bonus chapters,

source code, or project files.

• A coupon to be used on your

next purchase.

Registration benefits vary by product.

Benefits will be listed on your Account

page under Registered Products.

informit.com/register

THIS PRODUCT

www.it-ebooks.info

http://www.it-ebooks.info/

How to Break Web Software
Rigorously test and improve the security of all your
Web software!

“The techniques in this book are not an option for testers–
they are mandatory and these are the guys to tell you how
to apply them!”
–HarryRobinson, Google.

For more information and to read sample material,
please visit informit.com.

Titles are also available at safari.informit.com.

Destroy Security Bugs
with James Whittaker

ISBN: 978-0-321-19433-6

ISBN: 978-0-321-36944-4

ISBN: 978-0-201-79619-3

How to Break Software
The practical tutorial on how to actually do testing by present-
ing numerous “attacks” you can perform to test your software
for bugs.

How to Break Software Security
A guide to prescriptive techniques (attacks that testers can use
on their own software) that are designed to ferret out security
vulnerabilities in software applications.

www.it-ebooks.info

http://www.it-ebooks.info/

InformIT is a brand of Pearson and the online presence

for the world’s leading technology publishers. It’s your source

for reliable and qualified content and knowledge, providing

access to the top brands, authors, and contributors from

the tech community.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

LearnIT at InformIT
Looking for a book, eBook, or training video on a new technology? Seek-

ing timely and relevant information and tutorials? Looking for expert opin-

ions, advice, and tips? InformIT has the solution.

• Learn about new releases and special promotions by

subscribing to a wide variety of newsletters.

Visit informit.com/newsletters.

• Access FREE podcasts from experts at informit.com/podcasts.

• Read the latest author articles and sample chapters at

informit.com/articles.

• Access thousands of books and videos in the Safari Books

Online digital library at safari.informit.com.

• Get tips from expert blogs at informit.com/blogs.

Visit informit.com/learn to discover all the ways you can access the

hottest technology content.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

Are You Part of the IT Crowd?

Connect with Pearson authors and editors via RSS feeds, Facebook,

Twitter, YouTube, and more! Visit informit.com/socialconnect.

www.it-ebooks.info

http://www.it-ebooks.info/

Try Safari Books Online FREE
Get online access to 5,000+ Books and Videos

Find trusted answers, fast
Only Safari lets you search across thousands of best-selling books from the top
technology publishers, including Addison-Wesley Professional, Cisco Press,
O’Reilly, Prentice Hall, Que, and Sams.

Master the latest tools and techniques
In addition to gaining access to an incredible inventory of technical books,
Safari’s extensive collection of video tutorials lets you learn from the leading
video training experts.

WAIT, THERE’S MORE!

Keep your competitive edge
With Rough Cuts, get access to the developing manuscript and be among the fi rst
to learn the newest technologies.

Stay current with emerging technologies
Short Cuts and Quick Reference Sheets are short, concise, focused content
created to get you up-to-speed quickly on new and cutting-edge technologies.

FREE TRIAL—GET STARTED TODAY!

www.informit.com/safaritrial

www.it-ebooks.info

www.informit.com/safaritrial
http://www.it-ebooks.info/

Your purchase of Exploratory Software Testing includes access to a free online edition
for 45 days through the Safari Books Online subscription service. Nearly every Addison-
Wesley Professional book is available online through Safari Books Online, along with
more than 5,000 other technical books and videos from publishers such as Cisco Press,
Exam Cram, IBM Press, O’Reilly, Prentice Hall, Que, and Sams.

SAFARI BOOKS ONLINE allows you to search for a specific answer, cut and paste
code, download chapters, and stay current with emerging technologies.

Activate your FREE Online Edition at

www.informit.com/safarifree

STEP 1: Enter the coupon code: ZVPQIWH.

STEP 2: New Safari users, complete the brief registration form.
Safari subscribers, just log in.

If you have difficulty registering on Safari or accessing the online edition,
please e-mail customer-service@safaribooksonline.com

FREE Online
Edition

www.it-ebooks.info

www.informit.com/safarifree
http://www.it-ebooks.info/

